330
Views
10
CrossRef citations to date
0
Altmetric
Articles

Modeling the bioconversion of starch to P(HB-co-HV) optimized by experimental design using Bacillus megaterium BBST4 strain

, , , &
Pages 1185-1202 | Received 14 Aug 2017, Accepted 13 Dec 2017, Published online: 02 Jan 2018

References

  • Imre B, Pukánszky B. Compatibilization in bio-based and biodegradable polymer blends. Eur Polym J. 2013;49:1215–1233 doi: 10.1016/j.eurpolymj.2013.01.019
  • López JA, Bucalá V, Villar MA. Application of dynamic optimization techniques for poly(β-hydroxybutyrate) production in a Fed-batch bioreactor. Ind Eng Chem Res. 2010;49:1762–1769. doi: 10.1021/ie9006547
  • Jacquel N, Lo CW, Wei YH, et al. Isolation and purification of bacterial poly(3-hydroxyalkanoates). Biochem Eng J. 2008;39:15–27. doi: 10.1016/j.bej.2007.11.029
  • Ojumu TV, Yu J, Solomon BO. Production of polyhydroxyalkanoates, a bacterial biodegradable polymer. African J Biotechnol. 2004;3:18–24. Available from: http://academicjournals.org/journal/AJB/article-abstract/F1BA0DF31754. doi: 10.5897/AJB2004.000-2004
  • Cavalheiro JMBT, de Almeida MCMD, Grandfils C, et al. Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem. 2009;44:509–515. doi: 10.1016/j.procbio.2009.01.008
  • Reis M, Albuquerque M, Villano M, et al. Mixed culture processes for polyhydroxyalkanoate production from agro-industrial surplus/wastes as feedstocks. In: Comprehensive Biotechnology. Second Edition. Elsevier B.V.; 2011. doi:10.1016/B978-0-08-088504-9.00464-5.
  • Halami PM. Production of polyhydroxyalkanoate from starch by the native isolate Bacillus cereus CFR06. World J Microbiol Biotechnol. 2008;24:805–812. Available from: http://link.springer.com/10.1007/s11274-007-9543-z.
  • Koller M. Recent advances in biotechnology (volume 2). Microbial biopolyester;2016.
  • Otari SV, Ghosh JS. Production and characterization of the polymer polyhydroxy butyrate-co-polyhydroxy valerate by Bacillus megaterium NCIM 2475. Curr Res J Biol Sci. 2009;1:23–26. Available from: maxwellsci.com/print/crjbs/(2)23-26.pdf.
  • Galego N, Rozsa C, Sánchez R, et al. Characterization and application of poly(β-hydroxyalkanoates) family as composite biomaterials. Polym Test. 2000;19:485–492. doi: 10.1016/S0142-9418(99)00011-2
  • Gogolewski S, Jovanovic M, Perren SM, et al. Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly (3-hydroxybutyrate) (PHB), and poly (3-hyroxybutyrate-co-3-hydroxyvalerate) (PHB/VA). J Biomed Mater Res. 1993;27:1135–1148. doi: 10.1002/jbm.820270904
  • Koller M, Niebelschütz H, Braunegg G. Strategies for recovery and purification of poly[(R)-3-hydroxyalkanoates] (PHA) biopolyesters from surrounding biomass. Eng Life Sci. 2013;13:549–562. doi: 10.1002/elsc.201300021
  • García IL, López JA, Dorado MP, et al. Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator. Bioresour Technol. 2013;130:16–22. doi: 10.1016/j.biortech.2012.11.088
  • Kim BS. Production of poly (3-hydroxybutyrate) from inexpensive substrates. Enzyme Microb Technol. 2000;27:774–777. doi: 10.1016/S0141-0229(00)00299-4
  • Ricardo Prada Ospina. Alternativa de aprovechamiento eficiente de residuos biodegradables: El caso de almidón residual derivado de la industrialización de la papa. Rev EAN. 2012;180–192. Available from: http://www.scielo.org.co/pdf/ean/n72/n72a12.pdf.
  • Martin A. Bioconversion of waste materials to industrial products. Eff Br Mindfulness Interv acute Pain Exp. An Exam. Individ. Differ;2015.
  • Huang T-Y, Duan K-J, Huang S-Y, et al. Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J Ind Microbiol Biotechnol. 2006;33:701–706 . Available from: http://link.springer.com/10.1007/s10295-006-0098-z.
  • Chen CW, Don TM, Yen HF. Enzymatic extruded starch as a carbon source for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. Process Biochem. 2006;41:2289–2296. doi: 10.1016/j.procbio.2006.05.026
  • Yu J. Production of PHA from starchy wastewater via organic acids. J Biotechnol. 2001;86:105–112. doi: 10.1016/S0168-1656(00)00405-3
  • Seluy LG. Procesos de tratamiento y valorización de efluentes líquidos de la industria cervecera. [thesis];2015.
  • Reddy SV, Thirumala M, Mahmood SK. A novel Bacillus sp. accumulating poly (3-hydroxybutyrate-co-3- hydroxyvalerate) from a single carbon substrate. J Ind Microbiol Biotechnol. 2009;36:837–843.
  • Porras MA, Vitale C, Villar MA, et al. Bioconversion of glycerol to poly(HB-co-HV) copolymer in an inexpensive medium by a Bacillus megaterium strain isolated from marine sediments. J Environ Chem Eng. 2017;5:1–9. doi: 10.1016/j.jece.2016.11.012
  • Schleifer K-H. Phylum XIII. Firmicutes Gibbons and Murray 1978, 5 (Firmacutes [sic] Gibbons and Murray 1978, 5). Bergey’s Manual®. Syst. Bacteriol. SE – 3. 2009;5:19–1317.
  • Talebpour Z, Ghassempour A, Abbaci M, et al. Optimization of microwave-assisted extraction for the determination of glycyrrhizin in menthazin herbal drug by experimental design methodology. Chromatographia. 2009;70:191–197. doi: 10.1365/s10337-009-1146-4
  • Bezerra MA, Santelli RE, Oliveira EP, et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76:965–977. doi: 10.1016/j.talanta.2008.05.019
  • Hatambeygi N, Abedi G, Talebi M. Method development and validation for optimised separation of salicylic, acetyl salicylic and ascorbic acid in pharmaceutical formulations by hydrophilic interaction chromatography and response surface methodology. J Chromatogr A. 2011;1218:5995–6003. doi: 10.1016/j.chroma.2011.06.009
  • Switzar L, Giera M, Lingeman H, et al. Protein digestion optimization for characterization of drug-protein adducts using response surface modeling. J Chromatogr A. 2011;1218:1715–1723. doi: 10.1016/j.chroma.2010.12.043
  • Yuan J, Huang J, Wu G, et al. Multiple responses optimization of ultrasonic-assisted extraction by response surface methodology (RSM) for rapid analysis of bioactive compounds in the flower head of Chrysanthemum morifolium Ramat. Ind Crops Prod. 2015;74:192–199 . Available from: http://linkinghub.elsevier.com/retrieve/pii/S0926669015300674.
  • Derringer G, Suich R. Simultaneous optimization of several response variables. J Qual Technol. 1980;12:214–219. doi: 10.1080/00224065.1980.11980968
  • Shahid S, Mosrati R, Ledauphin J, et al. Impact of carbon source and variable nitrogen conditions on bacterial biosynthesis of polyhydroxyalkanoates: evidence of an atypical metabolism in Bacillus megaterium DSM 509. J Biosci Bioeng. 2013;116:302–308 . Available from: http://linkinghub.elsevier.com/retrieve/pii/S1389172313000595.
  • Dhangdhariya JH, Dubey S, Trivedi HB, et al. Polyhydroxyalkanoate from marine Bacillus megaterium using CSMCRI’s dry sea mix as a novel growth medium. Int J Biol Macromol. 2015;76:254–261. doi: 10.1016/j.ijbiomac.2015.02.009
  • Papaneophytou CP, Kyriakidis DA. Optimization of polyhydroxyalkanoates production from Thermus thermophilus HB8 using response surface methodology. J Polym Environ. 2012;20:760–773 . Available from: http://link.springer.com/10.1007/s10924-012-0451-4.
  • Humbird D, Fei Q. Scale-up considerations for biofuels. Eckert C, Trinh C, editors. In: Biotechnology for biofuel production and optimization. Amsterdam, Netherlands: Elsevier; 2016. p. 513–517.
  • Khanna S, Srivastava AK. A simple structured mathematical model for biopolymer (PHB) production. Biotechnol Prog. 2005;21:830–838. doi: 10.1021/bp0495769
  • Chatzidoukas C, Penloglou G, Kiparissides C. Development of a structured dynamic model for the production of polyhydroxybutyrate (PHB) in Azohydromonas lata cultures. Biochem Eng J. 2013;71:72–80. doi: 10.1016/j.bej.2012.11.015
  • Novak M. Mathematical modelling as a tool for optimized PHA production. Chem Biochem Eng Q. 2015;29:183–220. Available from: http://pierre.fkit.hr/hdki/cabeq/pdf/29_2_2015/Cabeq2015-02-webNovak.pdf. doi: 10.15255/CABEQ.2014.2101
  • Wang G, Tang W, Xia J, et al. Integration of microbial kinetics and fluid dynamics toward model-driven scale-up of industrial bioprocesses. Eng Life Sci. 2015;15:20–29. doi: 10.1002/elsc.201400172
  • Patwardhan PR, Srivastava AK. Model-based fed-batch cultivation of R. eutropha for Enhanced Biopolymer Production. Biochem Eng J. 2004;20:21–28. doi: 10.1016/j.bej.2004.04.001
  • Manna A, Banerjee R, Paul AK. Accumulation of poly (3-hydroxybutyric acid) by some soil Streptomyces. Curr Microbiol. 1999;39:153–158. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10441729. doi: 10.1007/s002849900437
  • Valappil SP, Misra SK, Boccaccini AR, et al. Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised Bacillus cereus SPV. J Biotechnol. 2007;132:251–258. doi: 10.1016/j.jbiotec.2007.03.013
  • Hocking PJ, Marchessault R. Polyhydroxyalkanoates. Berlin: Springer; 1998. p. 220–248.
  • Porras MA, Villar MA, Cubitto MA. Novel spectrophotometric technique for rapid determination of extractable PHA using Sudan black dye. J Biotechnol: 1–20.
  • Nakamura LK. Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations. Int J Syst Bacteriol. 1981;31:56–63. doi: 10.1099/00207713-31-1-56
  • Subramaniam M, Baradaran A, Rosli MI, et al. Effect of signal peptides on the secretion of β-cyclodextrin glucanotransferase in Lactococcus lactis NZ9000. J Mol Microbiol Biotechnol. 2012;22:361–372. Available from: http://www.karger.com/doi/10.1159/000343921.
  • Najafpour GD, Shan CP. Enzymatic hydrolysis of molasses. Bioresour Technol. 2003;86:91–94. doi: 10.1016/S0960-8524(02)00103-7
  • Schaeffer AB, Fulton MD. A simplified method of staining endospores. Science. 1933;77:194–194.
  • R Core Team. R: A language, environment for statistical computing. R Found Stat Comput, Vienna;2016.
  • Mulchandani A, Luong JHT, Groom C. Substrate inhibition kinetics for microbial growth and synthesis of poly-β-hydroxybutyric acid by Alcaligenes eutrophus ATCC 17697. Appl Microbiol Biotechnol. 1989;30.
  • Faccin DJL, Corrêa MP, Rech R, et al. Modeling P(3HB) production by Bacillus megaterium. J Chem Technol Biotechnol. 2012;87:325–333. doi: 10.1002/jctb.2713
  • P.S.E. L. gPROMS Advanced user guide-release 2.3. Process Syst. Enterp. Ltd;2004.
  • Xu J, Guo B-H, Yang R, et al. In situ FTIR study on melting and crystallization of polyhydroxyalkanoates. Polymer (Guildf). 2002;43:6893–6899. doi: 10.1016/S0032-3861(02)00615-8
  • Bloembergen S, Holden DA, Hamer GK, et al. Studies of composition and crystallinity of bacterial poly(β-hydroxybutyrate-co-β-hydroxyvalerate). Macromolecules. 1986;19:2865–2871. Available from: http://pubs.acs.org/doi/abs/10.1021/ma00165a034.
  • Luo R, Chen J, Zhang L, et al. Polyhydroxyalkanoate copolyesters produced by Ralstonia eutropha PHB-4 harboring a low-substrate-specificity PHA synthase PhaC2Ps from Pseudomonas stutzeri 1317. Biochem Eng J. 2006;32:218–225. doi: 10.1016/j.bej.2006.10.005
  • Choi J, Lee SY. Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol. 1999;51:13–21. doi: 10.1007/s002530051357
  • Song Y, Matsumoto K, Tanaka T, et al. Single-step production of polyhydroxybutyrate from starch by using α-amylase cell-surface displaying system of Corynebacterium glutamicum. J Biosci Bioeng. 2013;115:12–14 . Available from: http://linkinghub.elsevier.com/retrieve/pii/S1389172312003477. doi: 10.1016/j.jbiosc.2012.08.004
  • Malhotra R, Noorwez SM, Satyanarayana T. Production and partial characterization of thermostable and calcium-independent alpha-amylase of an extreme thermophile Bacillus thermooleovorans NP54. Lett Appl Microbiol. 2000;31:378–384. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11069641. doi: 10.1046/j.1472-765x.2000.00830.x
  • Thirumala M, Reddy SV, Mahmood SK. Production and characterization of PHB from two novel strains of Bacillus spp. isolated from soil and activated sludge. J Ind Microbiol Biotechnol. 2010;37:271–278. Available from: http://link.springer.com/10.1007/s10295-009-0670-4.
  • Goyal N, Gupta JK, Soni SK. A novel raw starch digesting thermostable α-amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch. Enzyme Microb Technol. 2005;37:723–734. Available from: http://linkinghub.elsevier.com/retrieve/pii/S014102290500195X. doi: 10.1016/j.enzmictec.2005.04.017
  • Sodhi HK, Sharma K, Gupta JK, et al. Production of a thermostable α-amylase from Bacillus sp. PS-7 by solid state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production. Process Biochem. 2005;40:525–534. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0032959203004035. doi: 10.1016/j.procbio.2003.10.008
  • Riaz A, Qadar SAU, Anwar A, et al. Production and characterization of thermostable α-amylase from a newly isolated strain of Bacillus subtilis KIBGE-HAR. Internet J Microbiol. 2009;6:1–8.
  • Hassan MA, Shirai Y, Kubota A, et al. Effect of oligosaccharides on glucose consumption by Rhodobacter sphaeroides in polyhydroxyalkanoate production from enzymatically treated crude sago starch. J Ferment Bioeng. 1998;86:57–61. doi: 10.1016/S0922-338X(98)80034-2
  • Poomipuk N, Reungsang A, Plangklang P. Poly-β-hydroxyalkanoates production from cassava starch hydrolysate by Cupriavidus sp. KKU38 . Int J Biol Macromol. 2014;65:51–64. doi: 10.1016/j.ijbiomac.2014.01.002
  • Wu Q, Huang H, Hu G, et al. Production of poly-3-hydroxybutyrate by Bacillus sp. JMa5 cultivated in molasses media. Antonie Van Leeuwenhoek. 2001;80:111–118.
  • Baş D, Boyacı İH. Modeling and optimization I: usability of response surface methodology. J Food Eng. 2007;78:836–845. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0260877405007843. doi: 10.1016/j.jfoodeng.2005.11.024
  • López Jiménez JA. Polímeros de interés industrial. Síntesis y caracterización de polihidroxibutirato (PHB) [Tesis]. Dr. Univ. Nac. del Sur;2011.
  • Hahn, S. E. I. K., Chang, Y. K. LSY. Recovery, characterization of poly(3-hydroxybutyric acid) synthesized in Alcaligenes eutrophus, recombinant Escherichia coli. Appl Env Microbiol. 1995;61:34–39.
  • Shen X-W, Shi Z-Y, Song G, et al. Engineering of polyhydroxyalkanoate (PHA) synthase PhaC2Ps of Pseudomonas stutzeri via site-specific mutation for efficient production of PHA copolymers. Appl Microbiol Biotechnol. 2011;91:655–665. doi: 10.1007/s00253-011-3274-7
  • Shamala TR, Vijayendra SVN, Joshi GJ. Agro-industrial residues and starch for growth and co-production of polyhydroxyalkanoate copolymer and α-amylase by Bacillus sp. CFR-67. Brazilian J Microbiol. 2012;43:1094–1102. doi: 10.1590/S1517-83822012000300036
  • López JA, Naranjo JM, Higuita JC, et al. Biosynthesis of PHB from a new isolated Bacillus megaterium strain: outlook on future developments with endospore forming bacteria. Biotechnol Bioprocess Eng. 2012;17:250–258. doi: 10.1007/s12257-011-0448-1
  • Povolo S, Romanelli MG, Basaglia M, et al. Polyhydroxyalkanoate biosynthesis by Hydrogenophaga pseudoflava DSM1034 from structurally unrelated carbon sources. New Biotechnol. 2013;30:629–634. doi: 10.1016/j.nbt.2012.11.019
  • Rivera-Terceros P, Tito-Claros E, Torrico S, et al. Production of poly(3-hydroxybutyrate) by Halomonas boliviensis in an air-lift reactor. J Biol Res. 2015;22:1–9.
  • Quillaguamán J, Hashim S, Bento F, et al. Poly(beta-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1 using starch hydrolysate as substrate. J Appl Microbiol. 2005;99:151–157. doi: 10.1111/j.1365-2672.2005.02589.x
  • Sheu D-S, Chen W-M, Yang J-Y, et al. Thermophilic bacterium Caldimonas taiwanensis produces poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from starch and valerate as carbon sources. Enzyme Microb Technol. 2009;44:289–294. doi: 10.1016/j.enzmictec.2009.01.004
  • Kim BS, Chang HN. Production of poly (3-hydroxybutyrate) from starch by Azotobacter chroococcum. Biotechnol Lett. 1998;20:109–112. Available from: http://link.springer.com/article/10.1023/A:1005307903684.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.