516
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Enhanced biosorption of transition metals by living Chlorella vulgaris immobilized in Ca-alginate beads

, &
Pages 1793-1809 | Received 06 Aug 2017, Accepted 16 Jan 2018, Published online: 01 Feb 2018

References

  • Lasat M. Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res. 2000;2(5):1–25.
  • Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnol Adv. 2009;27(2):195–226.
  • Järup L. Hazards of heavy metal contamination. Br Med Bull. 2003;68(1):167–182.
  • Alhaji MH, Sanaullah K, Lim S-F, et al. Photocatalytic treatment technology for palm oil mill effluent (POME)–A review. Process Saf Environ Prot. 2016;102:673–686.
  • Chang SH. An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass Bioenergy. 2014;62:174–181.
  • Abdul KH, Nurul FM, Jawaid M, et al. Empty fruit bunches as a reinforcement in laminated bio-composites. J Compos Mater. 2011;45(2):219–236.
  • Bhat A, Abdul Khalil H, Bhat I, et al. Development and characterization of novel modified red mud nanocomposites based on poly (hydroxy ether) of bisphenol A. J Appl Polym Sci. 2011;119(1):515–522.
  • Ahmad A, Buang A, Bhat A. Renewable and sustainable bioenergy production from microalgal co-cultivation with palm oil mill effluent (POME): a review. Renewable Sustainable Energy Rev. 2016;65:214–234.
  • Veglio F, Quaresima R, Fornari P, et al. Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning. Waste Manage. 2003;23(3):245–252.
  • Wang D, Sun W, Xu Y, et al. Speciation stability of inorganic polymer flocculant–PACl. Colloids Surf, A. 2004;243(1):1–10.
  • Aziz HA, Adlan MN, Ariffin KS. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr (III)) removal from water in Malaysia: post treatment by high quality limestone. Bioresour Technol. 2008;99(6):1578–1583.
  • Ahalya N, Ramachandra T, Kanamadi R. Biosorption of heavy metals. Res J Chem Environ. 2003;7(4):71–79.
  • Ahluwalia SS, Goyal D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol. 2007;98(12):2243–2257.
  • Antunes WM, Luna AS, Henriques CA, et al. An evaluation of copper biosorption by a brown seaweed under optimized conditions. Electron J Biotechnol. 2003;6(3):174–184.
  • Oboh I, Aluyor E, Audu T. Biosorption of heavy metal ions from aqueous solutions using a biomaterial. Leonardo J Sci. 2009;14:58–65.
  • Gadd GM. Heavy metal accumulation by bacteria and other microorganisms. Experientia. 1990;46(8):834–840.
  • Ashfaq Ahmad AHB, Buang A. Immobilized Chlorella vulgaris for efficient palm oil mill effluent treatment and heavy metals removal. Desalin Water Treat. 2017;81(2017):105–117.
  • Mallick N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. biometals. 2002;15(4):377–390.
  • Doshi H, Ray A, Kothari I, et al. Spectroscopic and scanning electron microscopy studies of bioaccumulation of pollutants by algae. Curr Microbiol. 2006;53(2):148–157.
  • Perales-Vela HV, Pena-Castro JM, Canizares-Villanueva RO. Heavy metal detoxification in eukaryotic microalgae. Chemosphere. 2006;64(1):1–10.
  • Solisio C, Lodi A, Torre P, et al. Copper removal by dry and re-hydrated biomass of Spirulina platensis. Bioresour Technol. 2006;97(14):1756–1760.
  • Lodi A, Soletto D, Solisio C, et al. Chromium (III) removal by Spirulina platensis biomass. Chem Eng J. 2008;136(2):151–155.
  • Solisio C, Lodi A, Soletto D, et al. Cadmium biosorption on Spirulina platensis biomass. Bioresour Technol. 2008;99(13):5933–5937.
  • Finocchio E, Lodi A, Solisio C, et al. Chromium (VI) removal by methylated biomass of Spirulina platensis: the effect of methylation process. Chem Eng J. 2010;156(2):264–269.
  • Ahmad A, Bhat A, Buang A. Biosorption of transition metals by freely suspended and Ca-alginate immobilised with Chlorella vulgaris: kinetic and equilibrium modeling. J Clean Prod. 2018;171:1361–1375.
  • Nascimento IA, Marques SSI, Cabanelas ITD, et al. Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenergy Res. 2013;6(1):1–13.
  • Rodrigues MS, Ferreira LS, de Carvalho JCM, et al. Metal biosorption onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris: multi-metal systems. J Hazard Mater. 2012;217:246–255.
  • Ferreira LS, Rodrigues MS, De Carvalho JCM, et al. Adsorption of Ni 2+, Zn 2+ and Pb 2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems. Chem Eng J. 2011;173(2):326–333.
  • Davis TA, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003;37(18):4311–4330.
  • Rezaee A, Ramavandi B, Ganati F, et al. Biosorption of mercury by biomass of filamentous algae Spirogyra species. J Biol Sci. 2006;6(4):695–700.
  • Hameed MA. Effect of immobilization on growth and photosynthesis of the green alga Chlorella vulgaris and its efficiency in heavy metals removal. Bull Fac Sci Assiut Univ. 2002;31(1–D):233–240.
  • Stein JR. Handbook of phycological methods: culture methods and growth measurements. Vol. 1. Cambridge University Press, London; 1979.
  • Yang J, Cao J, Xing G, et al. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour Technol. 2015;175:537–544.
  • Sarada B, Prasad MK, Kumar KK, et al. Cadmium removal by macro algae Caulerpa fastigiata: characterization, kinetic, isotherm and thermodynamic studies. J Environ Chem Eng. 2014;2(3):1533–1542.
  • Aksu Z. Equilibrium and kinetic modelling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of temperature. Sep Purif Technol. 2001;21(3):285–294.
  • Bayramoğlu G, Tuzun I, Celik G, et al. Biosorption of mercury (II), cadmium (II) and lead (II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. Int J Miner Process. 2006;81(1):35–43.
  • Matheickal JT, Yu Q, Woodburn GM. Biosorption of cadmium (II) from aqueous solutions by pre-treated biomass of marine alga Durvillaea potatorum. Water Res. 1999;33(2):335–342.
  • Sarı A, Tuzen M. Biosorption of Pb (II) and Cd (II) from aqueous solution using green alga (Ulva lactuca) biomass. J Hazard Mater. 2008;152(1):302–308.
  • Rome L, Gadd GM. Copper adsorption by Rhizopus arrhizus, Cladosporium resinae and Penicillium italicum. Appl Microbiol Biotechnol. 1987;26(1):84–90.
  • Fourest E, Roux J-C. Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Appl Microbiol Biotechnol. 1992;37(3):399–403.
  • Romera E, González F, Ballester A, et al. Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol. 2007;98(17):3344–3353.
  • Flores-Garnica JG, Morales-Barrera L, Pineda-Camacho G, et al. Biosorption of Ni (II) from aqueous solutions by Litchi chinensis seeds. Bioresour Technol. 2013;136:635–643.
  • Monteiro CM, Castro PM, Malcata FX. Cadmium removal by two strains of Desmodesmus pleiomorphus cells. Water Air Soil Pollut. 2010;208(1–4):17–27.
  • Gupta VK, Rastogi A, Nayak A. Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models. J Colloid Interface Sci. 2010;342(2):533–539.
  • Zeraatkar AK, Ahmadzadeh H, Talebi AF, et al. Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manage. 2016;181:817–831.
  • Bulgariu L, Cojocaru C, Robu B, et al. EQUILIBRIUM ISOTHERMS STUDIES FOR SORPTION OF LEAD IONS FROM AQUEOUS SOLUTIONS USING ROMANIAN PEAT SORBENT. Environ Eng Manag J. 2007;6(5):425–430.
  • Chong K, Volesky B. Description of two-metal biosorption equilibria by Langmuir-type models. Biotechnol Bioeng. 1995;47(4):451–460.
  • Dursun G, Çiçek H, Dursun AY. Adsorption of phenol from aqueous solution by using carbonised beet pulp. J Hazard Mater. 2005;125(1):175–182.
  • Liu C, Yuan H, Yang J, et al. Effective biosorption of reactive blue 5 by pH-independent lyophilized biomass of Bacillus megaterium. Afr J Biotech. 2011;10(73):16626.
  • Ho Y-S, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34(5):451–465.
  • Allen SJ, Koumanova B, Kircheva Z, et al. Adsorption of 2-nitrophenol by technical hydrolysis lignin: kinetics, mass transfer, and equilibrium studies. Ind Eng Chem Res. 2005;44(7):2281–2287.
  • Tunali S, Akar T, Özcan AS, et al. Equilibrium and kinetics of biosorption of lead (II) from aqueous solutions by Cephalosporium aphidicola. Sep Purif Technol. 2006;47(3):105–112.
  • Bayramoğlu G, Arıca MY. Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu (II), Zn (II) and Ni (II): kinetics and equilibrium studies. Bioresour Technol. 2009;100(1):186–193.
  • Mallick N, Rai L. Influence of culture density, pH, organic acids and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolum and Chlorella vulgaris. World J Microbiol Biotechnol. 1993;9(2):196–201.
  • Liu Y, Cao Q, Luo F, et al. Biosorption of Cd 2+, Cu 2+, Ni 2+ and Zn 2+ ions from aqueous solutions by pretreated biomass of brown algae. J Hazard Mater. 2009;163(2):931–938.
  • Talebi AF, Tabatabaei M, Mohtashami SK, et al. Comparative salt stress study on intracellular ion concentration in marine and salt-adapted freshwater strains of microalgae. Not Sci Biol. 2013;5(3):309.
  • Sarı A, Tuzen M. Biosorption of cadmium (II) from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J Hazard Mater. 2008;157(2):448–454.
  • Mehta S, Singh A, Gaur J. Kinetics of adsorption and uptake of Cu2+ by Chlorella vulgaris: influence of pH, temperature, culture age, and cations. J Environ Sci Heal A. 2002;37(3):399–414.
  • Environment) DDo. Environmental Quality (Industrial Effluents) Regulations, 2009; 2010. Available from: http://www.doe.gov.my/en/content/environmental-q
  • Malaysia Palm Oil Board (MPOB) aOPTEu, of MoMEIDD. http://www.mpob.gov.my/palm-info/environment/520-MAa, et al. Malaysia Palm Oil Board (MPOB) 2014. Available from: http://www.mpob.gov.my/palm-info/environment/520-achievements#Mill
  • Standards MSaIED. Malaysia sewage and industrial effluent discharge standards; 2014.
  • Gupta V, Rastogi A, Saini V, et al. Biosorption of copper (II) from aqueous solutions by Spirogyra species. J Colloid Interface Sci. 2006;296(1):59–63.
  • Javaid A, Bajwa R, Shafique U, et al. Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bioenergy. 2011;35(5):1675–1682.
  • Vilar VJ, Botelho CM, Pinheiro JP, et al. Copper removal by algal biomass: biosorbents characterization and equilibrium modelling. J Hazard Mater. 2009;163(2):1113–1122.
  • Saravanan A, Brindha V, Krishnan S. Studies on the structural changes of the biomass Sargassum sp. on metal adsorption. J Adv Bioinf. 2011;2:193–196.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.