547
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Treatment of mining waste leachate by the adsorption process using spent coffee grounds

&
Pages 2037-2051 | Received 12 Nov 2017, Accepted 26 Jan 2018, Published online: 15 Feb 2018

References

  • ec.europa.eu/environment/waste/mining [updated 2016 Sep 2; cited 2017 May 31]. Available from: http://www. ec.europa.eu
  • Renou S, Givaudan JG, Poulain S, et al. Landfill leachate treatment: review and opportunity. J Hazard Mater. 2008;150(3):468–493. doi: 10.1016/j.jhazmat.2007.09.077
  • Förstne U, Wittmann GTW. Metal pollution in the aquatic environment. Berlin: Springer Science & Business Media; 2012.
  • Adamczuk A, Kołodyńska D. Equilibrium, thermodynamic and kinetic studies on removal of chromium, copper, zinc and arsenic from aqueous solutions onto fly ash coated by chitosan. Chem Eng J. 2015;274:200–212. doi: 10.1016/j.cej.2015.03.088
  • Ahmad AL, Kusumastut A, Derek CJC, et al. Emulsion liquid membranes for cadmium removal: studies of extraction efficiency. Membr Membr Water Treat. 2013;4:11–25. doi: 10.12989/mwt.2013.4.1.011
  • Ayala J, Fernandez B. A case study of landfill leachate using coal bottom ash for the removal of Cd2+, Zn2+ and Ni2+. Metals. 2016;6(300):1–15. doi: 10.3390/met6120300
  • Ayala J, Fernández B. Bayer electrofilter fines as potential Se(VI) adsorbents. JOM. 2015;67:2727–2732. doi: 10.1007/s11837-015-1616-0
  • Cetin S, Pehliva E. The use of fly ash as a low cost, environmentally friendly alternative to activated carbon for the removal of heavy metals from aqueous solutions. Colloid Surf A. 2007;298:83–87. doi: 10.1016/j.colsurfa.2006.12.017
  • Coman V, Robotin B, Ilea P. Nickel recovery/removal from industrial wastes: a review. Resour Conserv Recycl. 2013;73:229–238. doi: 10.1016/j.resconrec.2013.01.019
  • Demirbas A, Pehlivan E, Gode F, et al. Adsorption behavior of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin. J Colloid Interface Sci Surf. 2005;282:20–25. doi: 10.1016/j.jcis.2004.08.147
  • Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J Environ Manage. 2011;92:407–418. doi: 10.1016/j.jenvman.2010.11.011
  • Fuerhacker M, Haile TM, Kogelnig D, et al. Application of ionic liquids for the removal of heavy metals from wastewater and activated sludge. Water Sci Technol. 2012;65:1765–1773. doi: 10.2166/wst.2012.907
  • Li L, Takahashi N, Kaneko K, et al. A novel method for nickel recovery and phosphorus removal from spent electroless nickel-plating solution. Sep Purif Technol. 2015;147:237–244. doi: 10.1016/j.seppur.2015.04.029
  • Liu Y, Wu X, Yuan D, et al. Removal of nickel from aqueous solution using cathodic deposition of nickel hydroxide at a modified electrode. J Chem Technol Biot. 2013;88:2193–2200. doi: 10.1002/jctb.4085
  • Purkayastha D, Mishra U, Biswas S. A comprehensive review on Cd(II) removal from aqueous solution. J Water Process Eng. 2014;2:105–128. doi: 10.1016/j.jwpe.2014.05.009
  • Sahoo PK, Tripathy S, Panigrahi MK, et al. Evaluation of the use of an alkali modified fly ash as a potential adsorbent for the removal of metals from acid mine drainage. Appl Water Sci. 2013;3:567–576. doi: 10.1007/s13201-013-0113-2
  • Revathi M, Saravanan M, Chiya AB, et al. Removal of copper, nickel, and zinc ions from electroplating rinse water. Clean Soil Air Water. 2012;40:66–79. doi: 10.1002/clen.201000477
  • Sočo E, Kalembkiewicz J. Adsorption of nickel(II) and copper(II) ions from aqueous solution by coal fly ash. J Environ Chem Eng. 2013;1:581–588. doi: 10.1016/j.jece.2013.06.029
  • Visa M, Isac L, Duta A. Fly ash adsorbents for multi-cation wastewater treatment. Appl Surf Sci. 2012;258:6345–6352. doi: 10.1016/j.apsusc.2012.03.035
  • Bhatnagar A, Minocha AK, Sillanpää M. Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochem Eng J. 2010;48:181–186. doi: 10.1016/j.bej.2009.10.005
  • Nguyen TAH, Ngo HH, Guo WS, et al. Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresour Technol. 2013;148:574–585. doi: 10.1016/j.biortech.2013.08.124
  • Mishra V, Balomajumder C, Agarwal VK. Biosorption of Zn (II) onto the surface of non-living biomasses: a comparative study of adsorbent particle size and removal capacity of three different biomasses. Water Air Soil Pollut 2010;211:489–500. doi: 10.1007/s11270-009-0317-0
  • Saka C, Şahin Ö, Küçük MM. Applications on agricultural and forest waste adsorbents for the removal of lead (II) from contaminated waters. Int J Environ Sci Technol. 2012;9:379–394. doi: 10.1007/s13762-012-0041-y
  • Wan Ngah WS, Hanafiah MAKM. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol. 2008;99:3935–3948. doi: 10.1016/j.biortech.2007.06.011
  • Abdel Salam OE, Reiad NA, ElShafei MM. A study of the removal characteristics of heavy metals from wastewater by low-cost adsorbents. J Adv Res. 2011;2:297–303. doi: 10.1016/j.jare.2011.01.008
  • Tasaso P. Adsorption of copper using pomelo peel and depectinated pomelo peel. J Clean Energy Technol. 2014;2(2):154–157. doi: 10.7763/JOCET.2014.V2.112
  • Saikaew W, Kaewsarn P, Saikaew W. Pomelo peel: agricultural waste for biosorption of cadmium ions from aqueous solutions. World Acad Sci Eng Technol. 2009;56:287–291.
  • El-Shafey EI. Sorption of Cd (II) and Se (IV) from aqueous solution using modified rice husk. J Hazard Mater. 2007;147:546–555. doi: 10.1016/j.jhazmat.2007.01.051
  • Kishore KK, Xiaoguang M, Christodoulatos C, et al. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. J Hazard Mater. 2008;153:1222–1234. doi: 10.1016/j.jhazmat.2007.09.113
  • Vázquez G, Mosquera O, Freire MS, et al. Alkaline pre-treatment of waste chestnut shell from a food industry to enhance cadmium, copper, lead and zinc ions removal. Chem Eng J. 2012;184:147–155. doi: 10.1016/j.cej.2012.01.019
  • Saeed A, Iqbal M, Akhtar MW. Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). J Hazard Mater. 2005;117:65–73. doi: 10.1016/j.jhazmat.2004.09.008
  • Villaescusa I, Fiol N, Martíınez M, et al. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Res 2004;38:992–1002. doi: 10.1016/j.watres.2003.10.040
  • Escudero C, Poch J, Villaescusa I. Modelling of breakthrough curves of single and binary mixtures of Cu(II), Cd(II), Ni(II) and Pb(II) sorption onto grape stalks waste. Chem Eng J. 2013;217:129–138. doi: 10.1016/j.cej.2012.11.096
  • Zuorro A, Lavecchia R. Adsorption of Pb(II) on spent leaves of green and black tea. Am J Applied Sci. 2010;7(2):153–159. doi: 10.3844/ajassp.2010.153.159
  • Ahmadpour A, Tahmasbi M, Bastami TR, et al. Rapid removal of cobalt ion from aqueous solutions by almond green hull. J Hazard Mater. 2009;166:925–930. doi: 10.1016/j.jhazmat.2008.11.103
  • Bayo J. Kinetic studies for Cd(II) biosorption from treated urban effluents by native grapefruit biomass (Citrus paradisi L.): the competitive effect of Pb(II), Cu(II) and Ni(II). Chem Eng J. 2012;191:278–287. doi: 10.1016/j.cej.2012.03.016
  • Ramos SNC, Xavier ALP, Teodoro FS, et al. Modeling mono- and multi-component adsorption of cobalt(II), copper(II) and nickel(II), metal ions from aqueous solution onto a new carboxylated sugarcane bagasse. Part I: batch adsorption study. Ind Crop Prod. 2015;74:357–371. doi: 10.1016/j.indcrop.2015.05.022
  • Ramos SNC, Xavier ALP, Teodoro FS, et al. Removal of cobalt(II), copper(II), and nickel(II) ions from aqueous solutions using phthalate-functionalized sugarcane bagasse: mono-and multicomponent adsorption in batch mode. Ind Crop Prod. 2016;79:116–130. doi: 10.1016/j.indcrop.2015.10.035
  • Pavasant P, Apiratikul R, Sungkhum V, et al. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga caulerpa lentillifera. Bioresour Technol. 2006;97:2321–2329. doi:10.1016/j.biortech.2005.10.032. Alga doi: 10.1016/j.biortech.2005.10.032
  • Kelly-Vargas K, Cerro-Lopez M, Reyna-Tellez S, et al. Biosorption of heavy metals in polluted water, using different waste fruit cortex. Phys Chem Earth. 2012;37–39:26–29. doi: 10.1016/j.pce.2011.03.006
  • Lesmana SO, Febriana N, Soetaredjo FE, et al. Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Eng J. 2009;44:19–41. doi: 10.1016/j.bej.2008.12.009
  • Wu CH, Kuo CY, Guan SS. Adsorption of heavy metals from aqueous solutions by waste coffee residues: kinetics, equilibrium, and thermodynamics. Desalin Water Treat. 2016;57:5056–5064. doi: 10.1080/19443994.2014.1002009
  • Azouaou N, Sadaoui Z, Djaafri A, et al. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics. J Hazard Mater. 2010;184:126–134. doi: 10.1016/j.jhazmat.2010.08.014
  • Djati Utomo H, Hunter KA. Adsorption of heavy metals by exhausted coffee grounds as a potential treatment method for waste waters. e-J Surf Sci Nanotechnol. 2006;4:504–506. doi: 10.1380/ejssnt.2006.504
  • Chun OH, Kadir ABA. Application of coffee waste in removing zinc of river water. Int J Zero Waste Gener. 2013;1(1):17–20.
  • Imessaoudene D, Hanini S, Bouzidi A. Biosorption of strontium from aqueous solutions onto spent coffee grounds. J Radioanal Nucl Chem. 2013;298:893–902. doi: 10.1007/s10967-013-2510-2
  • Imessaoudene D, Hanini S, Bouzidi A, et al. Kinetic and thermodynamic study of cobalt adsorption by spent coffee. Desalin Water Treat. 2016;57(13):6116–6123. doi: 10.1080/19443994.2015.1041049
  • Kyzas GZ. Commercial coffee wastes as materials for adsorption of heavy metals from aqueous solutions materials. Materials. 2012;5:1826–1840. doi: 10.3390/ma5101826
  • Kyzas GZ, Bikiaris DN, Kostoglou M, et al. Copper removal from aqueous systems with coffee wastes as low-cost materials. E3S Web of Conference; 2013 23 Apr 1;25004. doi:10.105/e3sconf/20130125004
  • Chou WL, Wang CT, Huang KY, et al. Investigation of indium ions removal from aqueous solutions using spent coffee grounds. Int J Phys Sci. 2012;7(16):2445–2454. doi: 10.5897/IJPS12.192
  • Pujol D, Bartrolí M, Fiol N, et al. Modelling synergistic sorption of Cr(VI), Cu(II) and Ni(II) onto exhausted coffee wastes from binary mixtures Cr(VI)–Cu(II) and Cr(VI)–Ni(II). Chem Eng J. 2013;230:396–405. doi: 10.1016/j.cej.2013.06.033
  • Djati Utomo H, Hunter KA. Particle concentration effect: adsorption of divalent metal ions on coffee grounds. Bioresour Technol. 2010;101:1482–1486. doi: 10.1016/j.biortech.2009.06.094
  • Azouaou N, Sadaoui Z, Mokaddem H. Removal of lead from aqueous solution onto untreated coffee grounds: a fixed-bed column study. Chem Eng Trans. 2014;38:151–156. doi: 10.3303/CET1438026
  • Nieto LM, Alami SBD, Hodaifa G, et al. Adsorption of iron on crude olive stones. Ind Crop Prod. 2010;32:467–471. doi: 10.1016/j.indcrop.2010.06.017
  • Pandey KK. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci. 1999;71(12):1969–1975. doi:10.1002/(SICI)1097-4628(19990321)71:12&lt;1969::AID-APP6>3.0.CO;2-D doi: 10.1002/(SICI)1097-4628(19990321)71:12<1969::AID-APP6>3.0.CO;2-D
  • Abreu HS, Latorraca JVF, Pereira RPW, et al. A supramolecular proposal of lignin structure and its relation with the wood properties. An Acad Bras Ciênc. 2009;81(1):137–142. doi: 10.1590/S0001-37652009000100014
  • International Coffee Organization (ICO). Total coffee production of exporting countries. London (UK); 2009 [updated 2016 Jul 13; cited 2017 May 31]. Available from: http://www.ico.org/trade_statistics.asp
  • European Coffee Federation (ECF). European coffee report 2013/14 [updated 2016 Sep 9; cited 2017 May 31]. Available from: WWW.ECF-COFFEE.ORG
  • Cruz R, Cardoso MM, Fernandes L, et al. Espresso coffee residues: a valuable source of unextracted compounds. J Agric Food Chem. 2012;60(32):7777–7784. doi: 10.1021/jf3018854
  • Caetano NS, Silva VFM, Melo AC, et al. Spent coffee grounds for biodiesel production and other applications. Clean Techn Environ Policy. 2014;16:1423–1430. doi:10.1007/s10098-014-0773-0. Ó doi: 10.1007/s10098-014-0773-0
  • Pujol D, Liu C, Gominho J, et al. The chemical composition of exhausted coffee waste. Ind Crop Prod. 2013;50:423–429. doi: 10.1016/j.indcrop.2013.07.056
  • Boonamnuayvitaya V, Sae-ung S, Tanthapanichakoon W. Preparation of activated carbons from coffee residue for the adsorption of formaldehyde. Sep Purif Technol. 2005;42:159–168. doi: 10.1016/j.seppur.2004.07.007
  • Ballesteros LF, Teixeira JA, Mussatto SI. Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Technol 2014;7:3493–3503. doi: 10.1007/s11947-014-1349-z
  • Abdolali A, Guo WS, Ngo HH, et al. Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review. Bioresour Technol. 2014;160:57–66. doi: 10.1016/j.biortech.2013.12.037
  • Rivera W, Velasco X, Gálvez C, et al. Effect of roasting process on glass transition and phase transition of Colombian Arabic coffee beans. Procedia Food Sci. 2011;1:385–390. doi: 10.1016/j.profoo.2011.09.059
  • Socrates G. Infrared and Raman characteristic group frequencies: tables and charts. 3rd ed. Chichester: John Wiley and Sons; 2001.
  • Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12–13):1781–1788. doi: 10.1016/j.fuel.2006.12.013
  • Tan G, Xiao D. Adsorption of cadmium ion from aqueous solution by ground wheat stems. J Hazard Mater. 2009;164(2–3):1359–1363. doi: 10.1016/j.jhazmat.2008.09.082
  • Iqbal M, Saeed A, Zafar SI. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J Hazard Mater. 2009;164(1):161–171. doi: 10.1016/j.jhazmat.2008.07.141
  • Feng N, Guo X, Liang S, et al. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. J Hazard Mater. 2011;185(1):49–54. doi: 10.1016/j.jhazmat.2010.08.114
  • Kante K, Nieto-Delgado C, Rangel-Mendez JR, et al. Spent coffee-based activated carbon: specific surface features and their importance for H2S separation process. J Hazard Mater. 2012;201–202:141–147. doi: 10.1016/j.jhazmat.2011.11.053
  • Parck D, Yun Y, Parck JM. The past, present and future trends of biosorption. Biotechnol Bioprocess Eng. 2010;15:86–102. doi: 10.1007/s12257-009-0199-4
  • Remenárová L, Pipíška M, Horník M, et al. Biosorption of cadmium and zinc by activated sludge from single and binary solutions: mechanism, equilibrium and experimental design study. J Taiwan Inst Chem Eng. 2012;43:433–443. doi: 10.1016/j.jtice.2011.12.004
  • Abdolali A, Ngo HH, Guo WS, et al. Development and evaluation of a new multi-metal binding biosorbent. Bioresour Technol. 2014;160:98–106. doi: 10.1016/j.biortech.2013.12.038
  • Kumar PS, Ramalingam S, Sathyaselvabala V, et al. Removal of cadmium (II) from aqueous solution by agricultural waste cashew nut shell. Korean J Chem Eng. 2012;29(6):756–768. doi: 10.1007/s11814-011-0259-2
  • Pagnanelli F, Esposito A, Toro L, et al. Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto sphaerotilus natans: langmuir-type empirical. Water Res 2003;37:627–633. doi: 10.1016/S0043-1354(02)00358-5
  • Fiol N, Villaescusa I, Martínez M, et al. Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep Purif Technol. 2006;50:132–140. doi: 10.1016/j.seppur.2005.11.016
  • Hossain MA, Ngo HH, Guo WS, et al. Competitive adsorption of metals on cabbage waste from multi-metal solutions. Bioresour Technol. 2014;160:79–88. doi: 10.1016/j.biortech.2013.12.107
  • Srivastava VC, Mall ID, Mishra IM. Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash. Chem Eng J. 2006;117(1):79–91. doi: 10.1016/j.cej.2005.11.021
  • Sen TK, Mahaian SP, Khilar KC. Adsorption of Cu2+ and Ni2+ on iron oxide and kaolin and its importance on Ni2+ transport in porous media. Colloids Surf A. 2002;211:91–102. doi:10.1016/S0927-7757(02)00235-2. Colloids and Surfaces A: Physicochemical and Engineering Aspects
  • Zheng W, Li XM, Wang F, et al. Adsorption removal of cadmium and copper from aqueous solution by areca—a food waste. J Hazard Mater. 2008;157(2–3):490–495. doi: 10.1016/j.jhazmat.2008.01.029
  • Petrovič A, Simonič M. Removal of heavy metal ions from drinking water by alginate-immobilised chlorella sorokiniana. Int J Environ Sci Technol. 2016;13:1761–1780. doi: 10.1007/s13762-016-1015-2
  • Gerente C, Du Mesnil PC, Andres Y, et al. Removal of metal ions from aqueous solution on low cost natural polysaccharides sorption mechanism approach. React Funct Polym. 2000;46(2):135–144. doi: 10.1016/S1381-5148(00)00047-X
  • Shaheen SM, Eissa FI, Ghanem KM, et al. Heavy metals removal from aqueous solutions and wastewaters by using various byproducts. J Environ Manag. 2013;128(15):514–521. doi: 10.1016/j.jenvman.2013.05.061
  • Kurniawan A, Kosasih AN, Febrianto J, et al. Evaluation of cassava peel waste as lowcost biosorbent for Ni-sorption: equilibrium, kinetics, thermodynamics and mechanism. Chem Eng J. 2011;172(1):158–166. doi: 10.1016/j.cej.2011.05.083
  • Crini G, Badot PM. Sorption processes and pollution: conventional and non-conventional sorbents for pollutant removal from wastemasters. Besançon: Presses Universitaires de Franche-Comté; 2011. ISBN-10: 2848673044
  • Srivastava VC, Mall ID, Mishra M. Equilibrium modeling of ternary adsorption of metal ions onto rice husk ash. J Chem Eng Data. 2009;54(3):705–711. doi: 10.1021/je8003029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.