716
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Degradation of anti-inflammatory drugs in municipal wastewater by heterogeneous photocatalysis and electro-Fenton process

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2436-2445 | Received 24 Aug 2017, Accepted 15 Feb 2018, Published online: 01 Mar 2018

References

  • Tran NH, Reinhard M, Gin KY. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 2018;133:182–207. doi: 10.1016/j.watres.2017.12.029
  • Kaur A, Umar A, Kansal SK. Heterogeneous photocatalytic studies of analgesic and non-steroidal anti-inflammatory drugs. App Catal A. 2016;510:134–155. doi: 10.1016/j.apcata.2015.11.008
  • Feng L, Van Hullebusch ED, Rodrigo M, et al. Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chem Eng J. 2013;228:944–964. doi: 10.1016/j.cej.2013.05.061
  • He Y, Sutton NB, Rijnaarts HHH, et al. Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation. Appl Catal B. 2016;182:132–141. doi: 10.1016/j.apcatb.2015.09.015
  • Salaeh S, Perisic DJ, Biosic M, et al. Diclofenac removal by simulated solar assisted photocatalysis using TiO2-based zeolite catalyst; mechanisms, pathways and environmental aspects. Chem Eng J. 2016;304:289–302. doi: 10.1016/j.cej.2016.06.083
  • Sarasidis VC, Plakas KV, Patsios SI, et al. Investigation of diclofenac degradation in a continuous photo-catalytic membrane reactor. Influence of operating parameters. Chem Eng J. 2014;239:299–311. doi: 10.1016/j.cej.2013.11.026
  • Kanakaraju D, Motti CA, Glass BD, et al. Solar photolysis versus TiO2-mediated solar photocatalysis: a kinetic study of the degradation of naproxen and diclofenac in various water matrices. Environ Sci Pollut Res. 2016;23:17437–17448. doi: 10.1007/s11356-016-6906-8
  • Méndez-Arriaga F, Esplugas S, Giménez J. Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Res. 2008;42(3):585–594. doi: 10.1016/j.watres.2007.08.002
  • Braz FS, Silva MRA, Silva FS, et al. Photocatalytic degradation of ibuprofen using TiO2 and ecotoxicological assessment of degradation intermediates against Daphnia similis. J Environ Prot. 2014;5:620–626. doi: 10.4236/jep.2014.57063
  • Cardoso da Silva JC, Reis Teodoro JA, Franco Afonso RJC, et al. Photolysis andphotocatalysis of ibuprofen in aqueous medium: characterization of by-products via liquid chromatography coupled to high-resolution mass spectrometry and assessment of their toxicities against Artemia Salina. J Mass Spectrom. 2014;49:145–153. doi: 10.1002/jms.3320
  • Skoumal M, Rodríguez RM, Cabot PL, et al. Electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton degradation of the drug ibuprofen in acid aqueous medium using platinum and boron-doped diamond anodes. Electrochim Acta. 2009;54(7):2077–2085. doi: 10.1016/j.electacta.2008.07.014
  • Mussa ZH, Al-Qaimb FF, Othman MR, et al. Pseudo first order kinetics and proposed transformation products pathway for the degradation of diclofenac using graphite–PVC composite as anode. J Taiwan Inst Chem Eng. 2017;72:37–44. doi: 10.1016/j.jtice.2016.12.031
  • Loaiza-Ambuludi S, Panizza M, Oturan N, et al. Electro-Fenton degradation of anti-inflammatory drug ibuprofen in hydroorganic medium. J Electroanal Chem. 2013;702:31–36. doi: 10.1016/j.jelechem.2013.05.006
  • Feng L, Oturan N, van Hullebusch ED, et al. Degradation of anti-inflammatory drug ketoprofen by electro-oxidation: comparison of electro-Fenton and anodic oxidation processes. Environ Sci Pollut Res. 2014;21(14):8406–8416. doi: 10.1007/s11356-014-2774-2
  • Yu X, Zhou M, Hu Y, et al. Recent updates on electrochemical degradation of bio-refractory organic pollutants using BDD anode: a mini review. Environ Sci Pollut Res. 2014;21:8417–8431. doi: 10.1007/s11356-014-2820-0
  • García O, Isarain-Chávez E, El-Ghenymy A, et al. Degradation of 2,4-D herbicide in a recirculation flow plant with a Pt / air-diffusion and a BDD / BDD cell by electrochemical oxidation and electro-Fenton process. J Electroanal Chem. 2014;728:1–9. doi: 10.1016/j.jelechem.2014.06.019
  • Brillas E, Sirés I, Oturan M. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev. 2009;109(12):6570–6631. doi: 10.1021/cr900136g
  • Bernabeu A, Palacios S, Vicente R, et al. Solar photo-Fenton at mild conditions to treat a mixture of six emerging pollutants. Chem Eng J. 2012;198–199:65–72. doi: 10.1016/j.cej.2012.05.056
  • Serna-Galvis EA, Silva-Agredo J, Giraldo AL, et al. Comparison of route, mechanism and extent of treatment for the degradation of a β-lactam antibiotic by TiO2 photocatalysis, sonochemistry, electrochemistry and the photo-Fenton system. Chem Eng J. 2016;284:953–962. doi: 10.1016/j.cej.2015.08.154
  • Serna-Galvis EA, Silva-Agredo J, Giraldo AL, et al. Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton, TiO2-photocatalysis and electrochemical processes. Sci Total Environ. 2016;541:1431–1438. doi: 10.1016/j.scitotenv.2015.10.029
  • Moreira FC, Garcia-Segura S, Boaventura RAR, et al. Degradation of the antibiotic trimethoprim by electrochemical advanced oxidation processes using a carbon-PTFE air-diffusion cathode and a boron-doped diamond or platinum anode. Appl Catal B. 2014;160–161:492–505. doi: 10.1016/j.apcatb.2014.05.052
  • Miranda-García N, Suárez S, Sánchez B, et al. Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Appl Catal B. 2011;103:294–301. doi: 10.1016/j.apcatb.2011.01.030
  • Kanakaraju D, Motti CA, Glass BD, et al. Tio2 photocatalysis of naproxen: effect of the water matrix, anions and diclofenac on degradation rates. Chemosphere. 2015;139:579–588. doi: 10.1016/j.chemosphere.2015.07.070
  • Darowna D, Grondzewska S, Morawski AW, et al. Removal of non-steroidal anti-inflammatory drugs from primary and secondary effluents in a photocatalytic membrane reactor. J Chem Technol Biotechnol. 2014;89(8):1265–1273. doi: 10.1002/jctb.4386
  • Salgado R, Pereira VJ, Carvalho G, et al. Photodegradation kinetics and transformation products of ketoprofen, diclofenac and atenolol in pure water and treated wastewater. J Hazard Mater. 2013;244–245:516–527. doi: 10.1016/j.jhazmat.2012.10.039
  • Giraldo-Aguirre AL, Erazo-Erazo ED, Flórez-Acosta OA, et al. TiO2 photocatalysis applied to the degradation and antimicrobial activity removal of oxacillin: evaluation of matrix components, experimental parameters, degradation pathways and identification. J Photochem Photobiol A Chem. 2015;311:95–103. doi: 10.1016/j.jphotochem.2015.06.021
  • Maya-Treviño ML, Villanueva-Rodríguez M, Guzmán-Mar JL, et al. Comparison of the solar photocatalytic activity of ZnO-Fe2O3 and ZnO-Fe(0) on 2,4-D degradation in a CPC reactor. Photochem Photobiol Sci. 2015;14(3):543–549. doi: 10.1039/C4PP00274A
  • Villanueva-Rodríguez M, Bello-Mendoza R, Wareham DG, et al. Discoloration and organic matter removal from coffee wastewater by electrochemical advanced oxidation processes. Water Air Soil Pollut. 2014;225(12):2204. doi: 10.1007/s11270-014-2204-6
  • APHA, American Public Health Association. Standard methods for the examination of water and wastewater. 21st ed. Washington (DC): American Public Health Association; 2005.
  • Jallouli N, Elghniji K, Hentati O, et al. UV and solar photo-degradation of naproxen: TiO2 catalyst effect, reaction kinetics, products identification and toxicity assessment. J Hazard Mater. 2016;304:329–336. doi: 10.1016/j.jhazmat.2015.10.045
  • Keen OS, Thurman EM, Ferrer I, et al. Dimer formation during UV photolysis of diclofenac. Chemosphere. 2013;93(9):1948–1956. doi: 10.1016/j.chemosphere.2013.06.079
  • Zhang H, Zhang P, Ji Y, et al. Photocatalytic degradation of four non-steroidal anti-inflammatory drugs in water under visible light by P25-TiO2/ tetraethyl orthosilicate film and determination via ultra performance liquid chromatography electrospray tandem mass spectrometry. Chem Eng J. 2015;262:1108–1115. doi: 10.1016/j.cej.2014.10.019
  • Sirés I, Brillas E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int. 2012;40(1):212–229. doi: 10.1016/j.envint.2011.07.012
  • Alalm MG, Tawfik A, Ookawara S. Degradation of four pharmaceuticals by solar photo-Fenton process: kinetics and costs estimation. J Environ Chem Eng. 2015;3(1):46–51. doi: 10.1016/j.jece.2014.12.009
  • Méndez-Arriaga F, Esplugas S, Giménez J. Degradation of the emerging contaminant ibuprofen in water by photo-Fenton. Water Res. 2010;44(2):589–595. doi: 10.1016/j.watres.2009.07.009
  • Im JK, Yoon J, Her N, et al. Sonocatalytic-TiO2 nanotube, Fenton, and CCl4 reactions for enhanced oxidation, and their applications to acetaminophen and naproxen degradation. Sep Purif Technol. 2015;141:1–9. doi: 10.1016/j.seppur.2014.11.021
  • Radjenović J, Sirtori C, Petrović M, et al. Solar photocatalytic degradation of persistent pharmaceuticals at pilot-scale: kinetics and characterization of major intermediate products. Appl Catal B. 2009;89(1–2):255–264. doi: 10.1016/j.apcatb.2009.02.013
  • Garcia-Segura S, Keller J, Brillas E, et al. Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment. J Hazard Mater. 2015;283:551–557. doi: 10.1016/j.jhazmat.2014.10.003
  • Autin O, Hart J, Jarvis P, et al. The impact of background organic matter and alkalinity on the degradation of the pesticide metaldehyde by two advanced oxidation processes: UV/H2O2 and UV/TiO2. Water Res. 2013;47(6):2041–2049. doi: 10.1016/j.watres.2013.01.022
  • Bolton JR, Bircher KG, Tumas W, et al. Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC technical report). Pure Appl Chem. 2001;73(4):627–637. doi: 10.1351/pac200173040627
  • Vishnuganth MA, Remya N, Kumar M, et al. Photocatalytic degradation of carbofuran by TiO2-coated activated carbon: model for kinetic, electrical energy per order and economic analysis. J Environ Manag. 2016;181:201–207. doi: 10.1016/j.jenvman.2016.06.016
  • Escudero CJ, Iglesias O, Dominguez S, et al. Performance of electrochemical oxidation and photocatalysis in terms of kinetics and energy consumption. New insights into the p-cresol degradation. J Environ Manag. 2017;195:117–124. doi: 10.1016/j.jenvman.2016.04.049

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.