1,990
Views
68
CrossRef citations to date
0
Altmetric
Articles

A comparison of aerobic granular sludge with conventional and compact biological treatment technologies

, , ORCID Icon &
Pages 2769-2778 | Received 18 Feb 2018, Accepted 09 Mar 2018, Published online: 20 Mar 2018

References

  • Morgenroth E, Sherden T, Van Loosdrecht MCM, et al. Aerobic granular sludge in a sequencing batch reactor. Water Res. 1997;31:3191–3194. doi: 10.1016/S0043-1354(97)00216-9
  • Liu Y, Tay JH. State of the art of biogranulation technology for wastewater treatment. Biotechnol Adv. 2004;22:533–563. doi: 10.1016/j.biotechadv.2004.05.001
  • Beun JJ, Hendriks A, van Loosdrecht MCM, et al. Aerobic granulation in a sequencing batch reactor. Water Res. 1999;33:2283–2290. doi: 10.1016/S0043-1354(98)00463-1
  • Ni BJ, Xie WM, Liu SG, et al. Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. Water Res. 2009;43:751–761. doi: 10.1016/j.watres.2008.11.009
  • de Kreuk MK, van Loosdrecht MCM. Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Sci Technol. 2004;49:9–17. doi: 10.2166/wst.2004.0792
  • Liu Y, Yang SF, Tay JH. Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria. J Biotechnol. 2004;108:161–169. doi: 10.1016/j.jbiotec.2003.11.008
  • de Kreuk MK, Heijnen JJ, Van Loosdrecht MCM. Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnol Bioeng. 2005;90:761–769. doi: 10.1002/bit.20470
  • Beun JJ, Heijnen JJ, van Loosdrecht MCM. N-Removal in a granular sludge sequencing batch airlift reactor. Biotechnol Bioeng. 2001;75:82–92. doi: 10.1002/bit.1167
  • Lochmatter S, Gonzalez-Gil G, Holliger C. Optimized aeration strategies for nitrogen and phosphorus removal with aerobic granular sludge. Water Res. 2013;47:6187–6197. doi: 10.1016/j.watres.2013.07.030
  • Pronk M, de Kreuk MK, de Bruin B, et al. Full scale performance of the aerobic granular sludge process for sewage treatment. Water Res. 2015;84:207–217. doi: 10.1016/j.watres.2015.07.011
  • McQuarrie JP, Boltz JP. Moving bed biofilm reactor technology: process applications, design, and performance. Water Environ. Res. 2011;83:560–575. doi: 10.2175/106143010X12851009156286
  • Krzeminski P, Leverette L, Malamis S, et al. Membrane bioreactors – a review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. J Memb Sci. 2017;527:207–227. doi: 10.1016/j.memsci.2016.12.010
  • Bengtsson S, de Blois M, Wilén BM, et al. Treatment of municipal wastewater with aerobic granular sludge. Crit Rev Environ Sci Technol. 2018; in press. doi: 10.1080/10643389.2018.1439653
  • Svenskt Vatten. Svenskt Vattens undersökning VASS reningsverk 2015 – nyckeltal från första året. 2016 . Swedish.
  • Tchobanoglous G, Stensel HD, Tsuchihashi R, et al. Metcalf & Eddy wastewater engineering: treatment and resource recovery. New York: McGraw-Hill Education; 2014.
  • ATV. ATV-DVWK-A 131E Dimensioning of single stage activated sludge plants; 2000.
  • Ødegaard H. Norwegian experiences with chemical treatment of raw wastewater. Water Sci Technol. 1992;25:255–264. doi: 10.2166/wst.1992.0357
  • van der Roest HF, de Bruin LMM, Gademan G, et al. Towards sustainable waste water treatment with Dutch Nereda® technology. Water Pract Technol. 2011;6:3. doi: 10.2166/wpt.2011.059
  • de Kreuk MK, Pronk M, Van Loosdrecht MCM. Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures. Water Res. 2005;39:4476–4484. doi: 10.1016/j.watres.2005.08.031
  • Hem L, Rusten B, Ødegaard H. Nitrification in a moving bed biofilm reactor. Water Res. 1994;28:1425–1433. doi: 10.1016/0043-1354(94)90310-7
  • Christensson M, Welander T. Treatment of municipal wastewater in a hybrid process using a new suspended carrier with large surface area. Water Sci Technol. 2004;49:207–214. doi: 10.2166/wst.2004.0843
  • Kraemer JT, Menniti AL, Erdal ZK, et al. A practitioner’s perspective on the application and research needs of membrane bioreactors for municipal wastewater treatment. Bioresour Technol. 2012;122:2–10. doi: 10.1016/j.biortech.2012.05.014
  • Kängsepp P, Väänänen J, Örning K, et al. Performance and operating experiences of the first Scandinavian full-scale discfilter installation for tertiary phosphorus polishing with preceding coagulation and flocculation. Water Pract Technol. 2016;11:459–468. doi: 10.2166/wpt.2016.040
  • Langer M, Väänänen J, Boulestreau M, et al. Advanced phosphorus removal via coagulation, flocculation and microsieve filtration in tertiary treatment. Water Sci Technol. 2017;75:2875–2882. doi: 10.2166/wst.2017.166
  • Bolzonella D, Pavan P, Battistoni P, et al. Mesophilic anaerobic digestion of waste activated sludge: influence of the solid retention time in the wastewater treatment process. Process Biochem. 2005;40:1453–1460. doi: 10.1016/j.procbio.2004.06.036
  • Gavala HN, Yenal U, Skiadas I V, et al. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature. Water Res. 2003;37:4561–4572. doi: 10.1016/S0043-1354(03)00401-9
  • Abma WR, Driessen W, Haarhuis R, et al. Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater. Water Sci Technol. 2010;61:1715–1722. doi: 10.2166/wst.2010.977
  • Desmidt E, Ghyselbrecht K, Zhang Y, et al. Global phosphorus scarcity and full-scale P-recovery techniques: a review. Crit Rev Environ Sci Technol. 2015;45:336–384. doi: 10.1080/10643389.2013.866531
  • Lackner S, Gilbert EM, Vlaeminck SE, et al. Full-scale partial nitritation/anammox experiences - An application survey. Water Res. 2014;55:292–303. doi: 10.1016/j.watres.2014.02.032
  • Smolders GJF, van der Meij J, van Loosdrecht MCM, et al. Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process. Biotechnol Bioeng. 1994;44:837–848. doi: 10.1002/bit.260440709
  • Rosso D, Lothman SE, Jeung MK, et al. Oxygen transfer and uptake, nutrient removal, and energy footprint of parallel full-scale IFAS and activated sludge processes. Water Res. 2011;45:5987–5996. doi: 10.1016/j.watres.2011.08.060
  • Sander S, Behnisch J, Wagner M. Energy, cost and design aspects of coarse- and fine-bubble aeration systems in the MBBR IFAS process. Water Sci Technol. 2017;75:890–897. doi: 10.2166/wst.2016.571
  • WEF. Membrane bioreactors: WEF manual of practice No. 36. Alexandria (VA): McGraw-Hilll Education; 2012.
  • Rusten B, Siljudalen JG, Nordeidet B. Upgrading to nitrogen removal with the KMT moving bed biofilm process. Water Sci Technol. 1994;29:185–195. doi: 10.2166/wst.1994.0608
  • Qasim SR. Wastewater treatment plants: planning, design, and operation. Boca Raton (FL): CRC Press; 1998.
  • Tao G, Kekre K, Oo MH, et al. Energy reduction and optimisation in membrane bioreactor systems. Water Pract Technol. 2010;5. doi: 10.2166/wpt.2010.088
  • Xiao K, Xu Y, Liang S, et al. Engineering application of membrane bioreactor for wastewater treatment in China: current state and future prospect. Front Environ Sci Eng. 2014;8:805–819. doi: 10.1007/s11783-014-0756-8
  • Itokawa H, Tsuji K, Yamashita K, et al. Design and operating experiences of full-scale municipal membrane bioreactors in Japan. Water Sci Technol. 2014;69:1088–1093. doi: 10.2166/wst.2014.020
  • Krzeminski P, van der Graaf JHJM, van Lier JB. Specific energy consumption of membrane bioreactor (MBR) for sewage treatment. Water Sci Technol. 2012;65:380–392. doi: 10.2166/wst.2012.861
  • Ødegaard H. Innovations in wastewater treatment: the moving bed biofilm process. Water Sci Technol. 2006;53:17–33. doi: 10.2166/wst.2006.284
  • Rusten B, Hen LJ, Ødegaard H. Nitrogen removal from dilute wastewater in cold climate using moving-bed biofilm reactors. Water Environ Res. 1995;67:65–74. doi: 10.2175/106143095X131204
  • Rusten B, Hellstrom BG, Hellstrom F, et al. Pilot testing and preliminary design of moving bed biofilm reactors for nitrogen removal at the FREVAR wastewater treatment plant. Water Sci Technol. 2000;41:13–20. doi: 10.2166/wst.2000.0419
  • Lustig G. Moving bed biofilm reactors (MBBR) i Sverige – Dimensionering och funktion [master’s thesis]. Department of Chemical Engineering, Lund University; 2012. Swedish.
  • Reardon R, Chavan R, Kreidler D, et al. Can innovative technologies provide benefits to municipal water resource recovery facilities. Proc Water Environ Fed WEFTEC. 2016: 4354–4373. doi: 10.2175/193864716819712872
  • Versprille AI, Zuurveen B, Stein T. The A-B process – a novel 2 stage waste-water treatment system. Water Sci. Technol. 1985;17:235–246. doi: 10.2166/wst.1985.0133
  • de Bruin LMM, de Kreuk MK, van der Roest HFR, et al. Aerobic granular sludge technology: an alternative to activated sludge? Water Sci Technol. 2004;49:1–7. doi: 10.2166/wst.2004.0790
  • Palmeiro-Sanchez T, del Rio A, Mosquera-Corral A, et al. Comparison of the anaerobic digestion of activated and aerobic granular sludges under brackish conditions. Chem Eng J. 2013;231:449–454. doi: 10.1016/j.cej.2013.07.052
  • del Rio A V, Morales N, Isanta E, et al. Thermal pre-treatment of aerobic granular sludge: impact on anaerobic biodegradability. Water Res. 2011;45:6011–6020. doi: 10.1016/j.watres.2011.08.050
  • Wilén B-M, Cimbritz M, Pettersson Jr. T, et al. Large scale tertiary filtration - results and experiences from the discfilter plant at the Rya WWTP in Sweden. Water Pract Technol. 2016;11:547–555. doi: 10.2166/wpt.2016.063
  • Judd S, Judd C. The MBR book – principles and applications of membrane bioreactors for water and wastewater treatment. Oxford: Elsevier; 2011.
  • Baresel C, Westling K, Samuelsson O, et al. Membrane bioreactor processes to meet todays and future municipal sewage treatment requirements? Int J Water Wastewater Treat. 2017;3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.