170
Views
9
CrossRef citations to date
0
Altmetric
Articles

Combined effect of fuel-design and after-treatment system on reduction of local and global emissions from CI engine

ORCID Icon, , &
Pages 2802-2812 | Received 20 Oct 2017, Accepted 12 Mar 2018, Published online: 22 Mar 2018

References

  • Tsolakis A, Megaritis A. Exhaust gas fuel reforming for diesel engines - a way to reduce smoke and NOX emissions simultaneously. SAE Technical Paper Series; 2004.
  • Madronich S, Shao M, Wilson SR, et al. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with changing climate: implications for human and environmental health. Photochem Photobiol Sci. 2015;14(1):149–169. doi: 10.1039/C4PP90037E
  • Feng X, Ge Y, Ma C, et al. Effects of particulate oxidation catalyst on unregulated pollutant emission and toxicity characteristics from heavy-duty diesel engine. Environ Technol. 2015;36(11):1359–1366. doi: 10.1080/09593330.2014.989923
  • Mofijur M, Masjuki HH, Kalam MA, et al. Prospects of biodiesel from jatropha in Malaysia. Renew Sust Energ Rev. 2012;16(7):5007–5020. doi: 10.1016/j.rser.2012.05.010
  • Meller L, Thuiller W, Pironon S, et al. Balance between climate change mitigation benefits and land use impacts of bioenergy: conservation implications for European birds. GCB Bioenergy. 2015;7(4):741–751. doi: 10.1111/gcbb.12178
  • Senthil R, Silambarasan R. Environmental effect of antioxidant additives on exhaust emission reduction in compression ignition engine fuelled with annona methyl ester. Environ Technol. 2015;36(16):2079–2085. doi: 10.1080/09593330.2015.1021856
  • Zhang Z, Moore JC, Huisingh D, et al. Review of geoengineering approaches to mitigating climate change. J Clean Prod. 2015;103:898–907. doi: 10.1016/j.jclepro.2014.09.076
  • Metz B, Davidson O, Bosch P, et al. Climate change mitiga-tion. Contribution of Working Group III to the fourth assessment report of the Intergovernmental Panel on Climate Change; 2007.
  • Leung DY, Caramanna G, Maroto-Valer MM. An overview of current status of carbon dioxide capture and storage technologies. Renew Sust Energ Rev. 2014;39:426–443. doi: 10.1016/j.rser.2014.07.093
  • Lohan SK, Ram T, Mukesh S, et al. Sustainability of biodiesel production as vehicular fuel in Indian perspective. Renew Sust Energ Rev. 2013;25:251–259. doi: 10.1016/j.rser.2013.04.024
  • No SY. Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: a review. Renew Sust Energ Rev. 2011;15(1):131–149. doi: 10.1016/j.rser.2010.08.012
  • Sharma YC, Singh B. Development of biodiesel from karanja, a tree found in rural India. Fuel. 2008;87(8):1740–1742. doi: 10.1016/j.fuel.2007.08.001
  • Chandrashekar LA, Mahesh NS, Gowda B, et al. Life cycle assessment of biodiesel production from pongamia oil in rural Karnataka. Agric Eng Int: CIGR J. 2012;14(3):67–77.
  • Srivastava PK, Verma M. Methyl ester of karanja oil as an alternative renewable source energy. Fuel. 2008;87(8):1673–1677. doi: 10.1016/j.fuel.2007.08.018
  • Nabi MN, Hoque SN, Akhter MS. Karanja (pongamia pinnata) biodiesel production in Bangladesh, characterization of karanja biodiesel and its effect on diesel emissions. Fuel Process Technol. 2009;90(9):1080–1086. doi: 10.1016/j.fuproc.2009.04.014
  • Chauhan BS, Kumar N, Cho HM, et al. A study on the performance and emission of a diesel engine fueled with Karanja biodiesel and its blends. Energy. 2013;56:1–7. doi: 10.1016/j.energy.2013.03.083
  • Sahoo PK, Das LM. Combustion analysis of Jatropha, Karanja and Polanga based biodiesel as fuel in a diesel engine. Fuel. 2009;88(6):994–999. doi: 10.1016/j.fuel.2008.11.012
  • Sureshkumar K, Velraj R, Ganesan R. Performance and exhaust emission characteristics of a CI engine fueled with pongamia pinnata methyl ester (PPME) and its blends with diesel. Renew Energ. 2008;33(10):2294–2302. doi: 10.1016/j.renene.2008.01.011
  • Agarwal AK, Dhar A, Gupta JG, et al. Effect of fuel injection pressure and injection timing of Karanja biodiesel blends on fuel spray, engine performance, emissions and combustion characteristics. Energ Convers Manage. 2015;91:302–314. doi: 10.1016/j.enconman.2014.12.004
  • Dhar A, Agarwal AK. Experimental investigations of the effect of pilot injection on performance, emissions and combustion characteristics of Karanja biodiesel fuelled CRDI engine. Energ Convers Manage. 2015;93:357–366. doi: 10.1016/j.enconman.2014.12.090
  • Thiyagarajan S, Geo VE, Martin LJ, et al. Effects of low carbon biofuel blends with Karanja (pongamia pinnata) oil methyl ester in a single cylinder CI engine on CO^ sub 2^ emission and other performance and emission characteristics. Nat Env Poll Technol. 2016;15(4):1249.
  • Purushothaman K, Nagarajan G. Performance, emission and combustion characteristics of a compression ignition engine operating on neat orange oil. Renew Energ. 2009;34(1):242–245. doi: 10.1016/j.renene.2008.03.012
  • Rashid U, Ibrahim M, Yasin S, et al. Biodiesel from citrus reticulata (mandarin orange) seed oil, a potential non-food feedstock. Ind Crops Prod. 2013;45:355–359. doi: 10.1016/j.indcrop.2012.12.039
  • Mota C, Alcaraz-López C, Iglesias M, et al. Investigation into CO2 absorption of the most representative agricultural crops of the region of Murcia. Departamento de Nutrición Vegetal, Project report; 2010.
  • Şahin Z, Durgun O, Aksu ON. Experimental investigation of n-butanol/diesel fuel blends and n-butanol fumigation – evaluation of engine performance, exhaust emissions, heat release and flammability analysis. Energ Convers Manage. 2015;103:778–789. doi: 10.1016/j.enconman.2015.06.089
  • Imtenan S, Masjuki HH, Varman M, et al. Effect of n-butanol and diethyl ether as oxygenated additives on combustion–emission-performance characteristics of a multiple cylinder diesel engine fuelled with diesel–jatropha biodiesel blend. Energ Convers Manage. 2015;94:84–94. doi: 10.1016/j.enconman.2015.01.047
  • Sharon H, Ram PJ, Fernando KJ, et al. Fueling a stationary direct injection diesel engine with diesel-used palm oil–butanol blends – An experimental study. Energ Convers Manage. 2013;73:95–105. doi: 10.1016/j.enconman.2013.04.027
  • Rajesh Kumar B, Saravanan S, Rana D, et al. A comparative analysis on combustion and emissions of some next generation higher-alcohol/diesel blends in a direct-injection diesel engine. Energ Convers Manage. 2016;119:246–256. doi: 10.1016/j.enconman.2016.04.053
  • Atmanlı A, İleri E, Yüksel B. Experimental investigation of engine performance and exhaust emissions of a diesel engine fueled with diesel – n -butanol – vegetable oil blends. Energ Convers Manage. 2014;81:312–321. doi: 10.1016/j.enconman.2014.02.049
  • Rakopoulos DC, Rakopoulos CD, Giakoumis EG, et al. Effects of butanol–diesel fuel blends on the performance and emissions of a high-speed DI diesel engine. Energ Convers Manage. 2010;51(10):1989–1997. doi: 10.1016/j.enconman.2010.02.032
  • Rajesh Kumar B, Saravanan S. Use of higher alcohol biofuels in diesel engines: a review. Renew Sust Energ Rev. 2016;60:84–115. doi: 10.1016/j.rser.2016.01.085
  • Thiyagarajan S, Geo VE, Martin LJ, et al. Selective non-catalytic reduction (SNCR) of CO2 and NO emissions from a single-cylinder CI engine using chemical absorbents. Emiss Control Sci Technol. 2017;3(3):233–242. doi: 10.1007/s40825-017-0076-0
  • Thiyagarajan S, Geo VE, Leenus JM, et al. Experimental investigation to reduce CO2 emission in a single cylinder CI engine using low carbon fuel blend with Karanja oil methyl ester and amine injection in the exhaust manifold. Int J Global Warm. 2017;13(3–4):278–295. doi: 10.1504/IJGW.2017.087198
  • Mahmoudi S, Baeyens J, Seville JP. NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. Biomass Bioenerg. 2010;34(9):1393–1409. doi: 10.1016/j.biombioe.2010.04.013
  • Thiyagarajan S, Geo VE, Martin LJ, et al. Simultaneous reduction of NO–smoke–CO2 emission in a biodiesel engine using low-carbon biofuel and exhaust after-treatment system. Clean Technol Environ Policy. 2017;19(5):1271–1283. doi: 10.1007/s10098-016-1326-5
  • Thiyagarajan S, Edwin Geo V, Martin LJ, et al. Carbon dioxide (CO2) capture and sequestration using biofuels and an exhaust catalytic carbon capture system in a single-cylinder CI engine: an experimental study. Biofuels. 2017;15:1–10.
  • Radhakrishnan K, Kalyanasundharam S, Ravichandran N, et al. A novel method of unburned hydrocarbons and NOx gases capture from vehicular exhaust using natural biosorbent. Sep Sci Technol. 2018;53(1):13–21. doi: 10.1080/01496395.2017.1380046
  • Sahoo PK, Das LM. Process optimization for biodiesel production from Jatropha, Karanja and Polanga oils. Fuel. 2009;88(9):1588–1594. doi: 10.1016/j.fuel.2009.02.016
  • Kumar BR, Saravanan S, Rana D, et al. Use of some advanced biofuels for overcoming smoke/NO x trade-off in a light-duty DI diesel engine. Renew Energ. 2016;96:687–699. doi: 10.1016/j.renene.2016.05.029
  • Mumpton FA. La roca magica: uses of natural zeolites in agriculture and industry. Proc Natl Acad Sci U S A. 1999;96(7):3463–3470. doi: 10.1073/pnas.96.7.3463
  • Ono SS, Matsuoka O, Yamamoto S. Surface structures of zeolites studied by atomic force microscopy. Micropor Mesopor Mat. 2001;48(1):103–110. doi: 10.1016/S1387-1811(01)00365-1
  • Xia Y, Mokaya R, Walker GS, et al. Superior CO2 adsorption capacity on N-doped, high-surface-area, microporous carbons templated from zeolite. Adv Energ Mater. 2011;1(4):678–683. doi: 10.1002/aenm.201100061
  • Budzianowski WM. Single solvents, solvent blends, and advanced solvent systems in CO2 capture by absorption: a review. Int J Global Warm. 2015;7(2):184–225. doi: 10.1504/IJGW.2015.067749
  • Fine NA, Goldman MJ, Rochelle GT. Nitrosamine formation in amine scrubbing at desorber temperatures. Environ. Sci. Technol. 2014;48(15):8777–8783. doi: 10.1021/es501484w
  • Holman JP. Experimental techniques for engineers. New Delhi: Tata McGraw Hill; 2004.
  • Baeyens J, Kang Q, Appels L, et al. Challenges and opportunities in improving the production of bio-ethanol. Prog Energ Combust Sci. 2015;47:60–88. doi: 10.1016/j.pecs.2014.10.003
  • Subramanian T, Varuvel EG, Leenus JM, et al. Effect of electrochemical conversion of biofuels using ionization system on CO 2 emission mitigation in CI engine along with post-combustion system. Fuel Process Technol. 2018;173:21–29. doi: 10.1016/j.fuproc.2018.01.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.