313
Views
9
CrossRef citations to date
0
Altmetric
Articles

Characterizing phenol-removing consortia under methanogenic and sulfate-reducing conditions: potential metabolic pathways

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 3216-3226 | Received 19 Jan 2018, Accepted 12 Apr 2018, Published online: 26 Apr 2018

References

  • Sierra-Alvarez R, Field JA, Kortekaas S, et al. Overview of the anaerobic toxicity caused by organic forest industry wastewater pollutants. Water Sci Technol. 1994;29:353–363.
  • Delforno TP, Okada DY, Polizel J, et al. Microbial characterization and removal of anionic surfactant in an expanded granular sludge bed reactor. Bioresour Technol. 2012;107:103–109.
  • Damianovic MHRZ, Saia FT, Baraldi E, et al. Anaerobic fixed-bed reactors for treatment of synthetic wastewater and estuarine-like water containing pentachlorophenol. Environ Eng Sci. 2013;30:61–66.
  • Bolaños RML, Varesche MBA, Zaiat M, et al. Phenol degradation in horizontal-flow anaerobic immobilized biomass (HAIB) reactor under mesophilic conditions. Water Sci Technol. 2001;44(4):167–174.
  • Speece RE. Anaerobic biotechnology for industrial wastewaters. Nashville (TN): Archae Press; 1996.
  • Michałowicz J, Duda W. Phenols – sources and toxicity. Polish J Environ Stud. 2007;16(3):347–362.
  • Mohana S, Acharya BK, Madamwar D. Distillery spent wash: treatment technologies and potential applications. J Hazard Mater. 2009;163:12–25.
  • Babich H, Davis DL. Phenol: a review of environmental and health risks. Regul Toxicol Pharm. 1981;1:90–109.
  • Pant D, Adholeya A. Biological approaches for treatment of distillery wastewater: a review. Bioresour Technol. 2007;98:2321–2334.
  • Syaichurrozi I., Budiyono, Sumardiono S. Predicting kinetic model of biogas production and biodegradability organic materials: biogas production from vinasse at variation of COD/N ratio. Bioresour Technol. 2013;149:390–397.
  • Fuess LT, Garcia ML. Implications of stillage land disposal: a critical review on the impacts of fertigation. J Environ Manage. 2014;145:210–229.
  • Fuess LT, Kiyuna LSM, Ferraz-Júnior ADN, et al. Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse. Appl Energy. 2017;189:480–491.
  • Moraes BS, Zaiat M, Bonomi A. Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: challenges and perspectives. Renew Sust Energ Rev. 2015;44:888–903.
  • Boopathy R. Isolation and characterization of a phenol-degrading, sulfate-reducing bacterium from swine manure. Bioresour Technol. 1995;54:29–33.
  • Evans WC, Fuchs G. Anaerobic degradation of aromatic compounds. Annu Rev Microbiol. 1988;42:289–317.
  • Knoll G, Winter J. Anaerobic degradation of phenol in sewage sludge. Benzoate formation from phenol and CO2 in the presence of H2. Appl Microbiol Biotechnol. 1987;25:384–391.
  • Blum JW, Hergenroeder R, Parkin GF, et al. Anaerobic treatment of coal conversion wastewater constituents: biodegradability and toxicity. J Water Pollut Control Fed. 1986;58:122–131.
  • Pearson F, Shium-Chung C, Gautier M. Toxic inhibition of anaerobic biodegradation. J Water Pollut Control Fed. 1980;52:472–482.
  • Hill GA, Robinson CW. Substrate inhibition kinetics: phenol degradation by Pseudomonas putida. Biotechnol Bioeng. 1975;17(11):1599–1615.
  • Aquino S, Pires EC. Assessment of ozone as a pretreatment to improve anaerobic digestion of vinasse. Braz J Chem Eng. 2016;33(2):279–285.
  • Siles JA, García-García I, Martín A, et al. Integrated ozonation and biomethanization treatments of vinasse derived from ethanol manufacturing. J Hazard Mater. 2011;188:247–253.
  • Pishgar R, Najafpour G, Neya BN, et al. Anaerobic biodegradation of phenol: comparative study of free and immobilized growth. Iranica J Energy Environ. 2011;2(4):348–355.
  • Fang HHP, Chen T, Li Y, et al. Degradation of phenol in wastewater in an upflow anaerobic sludge blanket reactor. Water Res. 1996;30(6):1353–1360.
  • Sancinetti GP, Sader LT, Varesche MBA, et al. Phenol degradation in an anaerobic fluidized bed reactor packed with low density support materials. Braz J Chem Eng. 2012;29(1):87–98.
  • Camiloti PR, Mockaitis G, Rodrigues JAD, et al. Innovative anaerobic bioreactor with fixed-structured bed (ABFSB) for simultaneous sulfate reduction and organic matter removal. J Chem Technol Biotechnol. 2014;89:1044–1050.
  • Aquino S, Fuess LT, Pires EC. Media arrangement impacts cell growth in anaerobic fixed-bed reactors treating sugarcane vinasse: structured vs. randomic biomass immobilization. Bioresour Technol. 2017;235:219–228.
  • Wilkie AC, Riedesel KJ, Owens JM. Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenerg. 2000;19:63–102.
  • Liamleam W, Annachhatre AP. Electron donors for biological sulfate reduction. Biotechnol Adv. 2007;25:452–463.
  • Back F, Widdel F. Anaerobic degradation of phenol and phenol derivatives by Desulfobacterium phenolicum sp. nov. Arch Microbiol. 1986;146:177–180.
  • Fang HHP, Liu Y, Chen T. Effect of sulfate on anaerobic degradation of benzoate UASB reactors. J Environ Eng ASCE. 1997;123(4):320–328.
  • Li Y, Lam S, Fang HHP. Interactions between methanogenic, sulfate-reducing and syntrophic acetogenic bacteria in the anaerobic degradation of benzoate. Water Res. 1996;30(7):1555–1562.
  • Borja R, Marín A, Maestro R, et al. Enhancement of the anaerobic digestion of wine distillery wastewater by the removal of phenolic inhibitors. Bioresour Technol. 1993;45:99–104.
  • Fang HHP, Chen T, Chan OC. Toxic effects of phenolic pollutants on anaerobic benzoate-degrading granules. Biotechnol Lett. 1995;17(1):117–120.
  • Godoi LAG, Damianovic MHRZ, Foresti E. Sulfidogenesis interference on methane production from carbohydrate-rich wastewater. Water Sci Technol. 2015;72:1644–1652.
  • Mockaitis G, Rodrigues JAD, Foresti E, et al. Toxic effects of cadmium (Cd2+) on anaerobic biomass: kinetic and metabolic implications. J Environ Manage. 2012;106:75–84.
  • APHA – American Public Health Association. Standard methods for the examination of water and wastewater. 21st ed. Washington (DC): APHA/AWWA/WEF; 2005.
  • Adorno MAT, Hirasawa JS, Varesche MBA. Development and validation of two methods to quantify volatile acids (C2–C6) by GC/FID: headspace (automatic and manual) and liquid-liquid extraction (LLE). Am J Analyt Chem. 2014;5:406–414.
  • Buchanan ID, Nicell JA. Model development for horseradish peroxidase catalyzed removal of aqueous phenol. Biotechnol Bioeng. 1997;54(3):251–261.
  • Gordon GE. Colorimetric determination of phenolic materials in refinery waste waters. Removal of sulfides by silver nitrate. Anal Chem. 1960;32(10):1325–1326.
  • Grifths RI, Whiteley AS, O’Donnell AG, et al. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microb. 2000;66:5488–5491.
  • Klindworth A, Pruesse E, Schweer T, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:1–11.
  • Gomez-Alvarez V, Teal TK, Schmidt TM. Systematic artifacts in metagenomes from complex microbial communities. ISME Journal. 2009;3(11):1314–1317.
  • Cox MP, Peterson DA, Biggs PJ. SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics. 2010;11(1):1–6.
  • McCarty DM, Oleszkiewicz JA. Competition between methanogens and sulfate reducers: effect of COD: sulfate ratio and acclimation. Water Environ Res. 1993;65(5):655–664.
  • Parkin GF, Lynch NA, Kuo W, et al. Interaction between sulfate reducers and methanogens fed acetate and propionat. Res J Water Pollut C. 1990;62(6):780–788.
  • Kobayashi T, Hashinaga T, Mikami E, et al. Methanogenic degradation of phenol and benzoate in acclimated sludges. Water Sci Technol. 1989;21:55–65.
  • Visser A, Hulshoff Pol LW, Lettinga G. Competition of methanogenic and sulfidogenic bacteria. Water Sci Technol. 1996;33:99–110.
  • Olguín-Lora P, Razo-Flores E. Anaerobic biodegradation of phenol in sulfide-rich media. J Chem Technol Biotechnol. 2004;79:554–561.
  • Tay JH, He YX, Yan YG. Improved anaerobic degradation of phenol with supplemental glucose. J Environ Eng. 2001;127:38–45.
  • Veeresh GS, Kumar P, Mehrotra I. Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review. Water Res. 2005;39:154–170.
  • Delforno TP, Lacerda GV, Noronha MF, et al. Microbial diversity of a full-scale UASB reactor applied to poultry slaughterhouse wastewater treatment: integration of 16S rRNA gene amplicon and shotgun metagenomic sequencing. Microbiology Open. 2017;6(3):1–12.
  • Audiffrin C, Cayol JJ, Joulian C, et al. Desulfonauticus submarinus gen. nov., sp. nov., a novel sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Micr. 2013;53:1585–1590.
  • Chovatia M, Sikorski J, Schröder M, et al. Complete genome sequence of Thermanaerovibrio acidaminovorans type strain (Su883T). Stand Genomic Sci. 2009;1:254–261.
  • Patel GB, Sprott GD. Methanosaeta concilii gen. nov. sp. nov. (“Methanothrix concilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov. Int J Syst Bacteriol. 1990;40(1):79–82.
  • Holmes DE, Nevin KP, Woodard TL, et al. Prolixibacter bellariivorans gen. nov., sp. nov., a sugar-fermenting, psychrotolerant anaerobe of the phylum bacteroidetes, isolated from a marine-sediment fuel cell. Int J Syst Evol Micr. 2007;57:701–707.
  • Hernandez ME, Beck DA, Lidstrom ME, et al. Oxygen availability is a major factor in determining the composition of microbial communities involved in methane oxidation. Peer J. 2015;801:1–13.
  • Jackson BE, Bhupathiraju VK, Tanner RS, et al. Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch Microbiol. 1999;171:107–114.
  • Schenk A, Aragno M. Bacillus schlegelii, a new species of thermophilic, facultatively chemolithoautotrophic bacterium oxidizing molecular hydrogen. J Gen Microbiol. 1979;115:333–341.
  • Li T, Bisaillon JG, Villemur R, et al. Isolation and characterization of a new bacterium carboxylating phenol to benzoic acid under anaerobic conditions. J Bacteriol. 1996;178(9):2551–2558.
  • Zhang X, Mandelco L, Wiegel J. Clostridium hydroxybenzoicum sp. nov., an amino acid-utilizing, hydroxybenzoate-decarboxylating bacterium isolated from methanogenic freshwater pond sediment. Int J Syst Bacteriol. 1994;44(2):214–222.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.