187
Views
16
CrossRef citations to date
0
Altmetric
Articles

Applicability of API ZYM to capture seasonal and spatial variabilities in lake and river sediments

, , & ORCID Icon
Pages 3227-3239 | Received 14 Mar 2018, Accepted 13 Apr 2018, Published online: 02 May 2018

References

  • Leach JH. Biota of Lake St. Clair: habitat evaluation and environmental assessment. Hydrobiologia. 1991;219:187–202. doi: 10.1007/BF00024755
  • USACE (United States Army Corps of Engineers). St. Clair River and Lake St. Clair Comprehensive Management Plan. U.S. Army Corps of Engineers. Detroit District, MI; 2004. 718 p.
  • Fogarty LR. Bacteria and emerging chemical contaminants in the St. Clair River/ Lake St. Clair Basin, Michigan: U.S. Geological Survey Open-File Report 2007; 1083, 10.
  • Oliver BG, Bourbonniere RA. Chlorinated contaminants in surficial sediments of Lakes Huron, St. Clair and Erie: implications regarding sources along the St. Clair and Detroit Rivers. J Great Lakes Res. 1985;11:366–372. doi: 10.1016/S0380-1330(85)71780-7
  • Tong Y, Lin G, Ke X, et al. Comparison of microbial community between two shallow freshwater lakes in middle Yangze basin, East China. Chemosphere. 2005;60:85–92. doi: 10.1016/j.chemosphere.2005.01.037
  • Jennerjahn TC. Biogeochemical response of tropical coastal systems to present and past environmental change. Earth-Sci Rev. 2012;114:19–41. doi: 10.1016/j.earscirev.2012.04.005
  • Allan JD. Stream ecology: structure and function of running waters. London: Chapman and Hall; 1995. 388 p.
  • Tiquia SM. Metabolic diversity of the heterotrophic microorganisms and potential link to pollution of the Rouge River. Environ Pollut. 2010;158:1435–1443. doi: 10.1016/j.envpol.2009.12.035
  • Boivin MEY, Massieux B, Breuve AM, et al. Functional recovery of biofilm communities after copper exposure. Environ Pollut. 2006;140:239–246. doi: 10.1016/j.envpol.2005.07.014
  • Torsvik V, Vreas L, Thingstad TF. Prokaryotic diversity magnitude, dynamics, and controlling factors. Science. 2002;296:1064–1066. doi: 10.1126/science.1071698
  • Liu X, Tiquia SM, Holguin G, et al. Molecular diversity of denitrifying genes in continental margin sediments within the oxygen deficient zone of the Pacific Coast of Mexico. Appl Environ Microbiol. 2003;69:3549–3560. doi: 10.1128/AEM.69.6.3549-3560.2003
  • Tiquia SM, Masson SA, Devol AH. Vertical distribution of nitrite reductase (nirS) genes in continental margin sediments of the Gulf of Mexico. FEMS Microbiol Ecol. 2006;58:464–475. doi: 10.1111/j.1574-6941.2006.00173.x
  • Flood M, Frabutt D, Floyd D, et al. Ammonia-oxidizing bacteria and archaea in sediments of the Gulf of Mexico. Environ Technol. 2015;36:124–135. doi: 10.1080/09593330.2014.942385
  • Chrost RJ. Microbial enzymatic degradation and utilization of organic matter. In: Chrost R, Overbeck J, editor. Microbial ecology of Lake Plußsee. New York (NY): Springer-Verlag; 1994. p. 118–174.
  • Findlay S, Hickey CW, Quinn JM. Microbial enzymatic response to catchment-scale variations in supply of dissolved organic carbon. New Zealand J Mar Freshwater Res. 1997;31:701–706. doi: 10.1080/00288330.1997.9516800
  • Keith SC, Arnosti C. Extracellular enzyme activity in a river-bay-shelf transect: variations in polysaccharide hydrolysis ratio with substrate and size class. Aqua Microb Ecol. 2001;24:243–253. doi: 10.3354/ame024243
  • Shiah FK, Chen TY, Gong C, et al. Differential coupling of bacterial and primary production in mesotrophic and oligotrophic systems of the East China Sea. Aquat Microb Ecol. 2001;23:273–282. doi: 10.3354/ame023273
  • Hoppe HG. Microbial extracellular enzyme activity: a new key parameter in aquatic ecology. In: Chrost RJ, editor. Microbial enzymes in aquatic environments. New York (NY): Springer-Verlag; 1991. p. 60–83.
  • Meyer-Reil LA. Seasonal and spatial distribution of extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments. Appl Environ Microbiol. 1987;53:1748–1755.
  • Arnosti C. Microbial extracellular enzymes and their role in dissolved organic matter cycling. In: Sinsabaugh RL, editor. Aquatic ecosystems: interactivity of dissolved organic matter. San Diego (CA): Academic Press; 2003. p. 315–342.
  • Weintraub SR, Wieder WR, Cleveland CC, et al. Organic matter inputs shift soil enzyme activity and allocation patterns in a wet tropical forest. Biochemistry. 2013;114:313–326.
  • Bidochka MJ, Burke S, Ng L. Extracellular hydrolytic enzymes in fungal genus Verticulum: adaptation for pathogenesis. Can J Microbiol. 1999;45:856–864. doi: 10.1139/w99-085
  • Tiquia SM. Evolution of enzyme activities during manure composting. J Appl Microbiol. 2002;92:764–775. doi: 10.1046/j.1365-2672.2002.01582.x
  • Tiquia SM, Wan JHC, Tam NFY. Extracellular enzyme profiles during co-composting of poultry manure and yard trimmings. Process Biochem. 2001;36:813–820. doi: 10.1016/S0032-9592(00)00281-8
  • Tiquia SM, Wan HC, Tam NFY. Microbial population dynamics and enzyme activities during composting. Compost Sci Util. 2002;10:150–161. doi: 10.1080/1065657X.2002.10702075
  • Bonilla N, Vida C, Martínez-Alonso M, et al. Organic amendments to avocado crops induce suppressiveness and influence the composition and activity of soil microbial communities. Appl Environ Microbiol. 2015;81:3405–3418. doi: 10.1128/AEM.03787-14
  • Martínez D, Molina MJ, Sánchez J, et al. API ZYM assay to evaluate enzyme fingerprinting and microbial functional diversity in relation to soil processes. Biol Fertil Soils. 2016;52:77–89. doi: 10.1007/s00374-015-1055-7
  • Palmisano AC, Sewab BS, Marusak DA. Hydrolytic enzyme activity in landfilled refuse. Appl Microbiol Biotechnol. 1993;38:828–832. doi: 10.1007/BF00167153
  • Palmisano AC, Marusak DA, Ritchie CJ, et al. A novel bioreactor simulation composting of municipal solid waste. J Microbiol Method. 1993;18:99–112. doi: 10.1016/0167-7012(93)90026-E
  • Tiquia SM. Extracellular hydrolytic enzyme activities of the heterotrophic microbial communities of the Rouge River: An approach to evaluate ecosystem response to urbanization. Microb Ecol. 2011;62:679–689. doi: 10.1007/s00248-011-9871-2
  • Zanardini E, Valle A, Gigliotti CJ, et al. Laboratory-scale trials of electrolytic treatment on industrial wastewaters: microbiological aspects. J Environ Sci Health A. 2002;37:1463–1481. doi: 10.1081/ESE-120013270
  • Parkinson D. Filamentous fungi. In: Weaver RW, Angle JS, Bottomley PS, editors. Methods of soil analysis Part 2. Microbiological and biochemical properties. Madison (WI): Soil Science Society of America; 1994. p. 329–350.
  • Zuberer DA. Recovery and enumeration of viable bacteria. In: Weaver RW, Angle JS, Bottomley PS, editors. Methods of soil analysis Part 2. Microbiological and biochemical properties. Madison (WI): Soil Science Society of America; 1994. p. 119–144.
  • Tiquia SM, Wan JHC, Tam NFY. Dynamics of yard trimmings composting as determined by dehydrogenase activity, ATP content, arginine ammonification, and nitrification potential. Process Biochem. 2002;37:1057–1065. doi: 10.1016/S0032-9592(01)00317-X
  • Lebart L, Morineau A, Warwick K. Multivariate descriptive statistical analysis. New York (NY): J. Wiley; 1984. 250 p.
  • Tiquia SM, Schleibak M, Schlaff J, et al. Microbial community profiling and characterization of some heterotrophic bacterial isolates from river waters and shallow groundwater wells along the Rouge River, Southeast Michigan. Environ Technol. 2008;29:651–663. doi: 10.1080/09593330801986998
  • Burns A, Ryder DS. Potential for biofilms as biological indicators in Australian riverine systems. Ecol Man Rest. 2001;2:53–64. doi: 10.1046/j.1442-8903.2001.00069.x
  • Rulík M, Spacil R. Extracellular enzyme activity within hyporheic sediments of a small lowland stream. Soil Biol Biochem. 2004;36:1653–1662. doi: 10.1016/j.soilbio.2004.07.005
  • Wilczek S, Fischer H, Pusch MT. Regulation and seasonal dynamics of extracellular enzyme activities in the sediments of a large lowland river. Microb Ecol. 2005;50:253–267. doi: 10.1007/s00248-004-0119-2
  • Munster U. Extracellular enzyme activity in eutrophic and polyhumic lakes. In: Chróst RJ, editor. Microbial enzymes in aquatic environments. New York (NY): Springer-Verlag; 1991. p. 96–122.
  • Hill BH, Elonen CM, Jicha TM, et al. Sediment microbial enzyme activity as an indicator of nutrient limitation in great lakes coastal wetlands. Freshwater Biol. 2006;51:1670–1683. doi: 10.1111/j.1365-2427.2006.01606.x
  • Helisto P, Korpela T. Effects of detergents on activity of microbial lipases as measured by the paranitrophenyl alkanoate esters method. Enzyme Microb Technol. 1998;23:113–117. doi: 10.1016/S0141-0229(98)00024-6
  • Gajewski A, Kirschner AK, Velimirov B. Bacterial lipolytic activity in a hypertrophic dead arm of the river Danube in Vienna. Hydrobiologia. 1997;344:1–10. doi: 10.1023/A:1002933706785
  • Chróst RJ. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Chróst RJ, editor. Microbial enzymes in aquatic environments. New York (NY): Springer-Verlag; 1991. p. 29–59.
  • Francoeur SN, Wetzel RG. Regulation of periphytic leucine–aminopeptidase activity. Aquat Microb Ecol. 2003;31:249–258. doi: 10.3354/ame031249
  • Barman TE. Enzyme handbook. New York (NY): Springer-Verlag; 1969. 928 p.
  • Cunha A, Almeida A, Coelho FJRC, Gomes NCM, Oliveira V, Santos AC. Bacterial extracellular enzyme activity in globally changing aquatic ecosystems. In: Mendez-Vilas A, editor. Current research, technology and education in applied microbiology and microbial biotechnology. Badajoz: Formatex Research Center; 2010. p. 124–135.
  • Albers CS, Kattner G, Hagen W. The compositions of wax esters, triacylglycerols and phospholipids in Arctic and Antarctic copepods: evidence of energetic adaptations. Mar Chem. 1996;55:347–358. doi: 10.1016/S0304-4203(96)00059-X
  • Meyers PA, Ishiwatari R. The early diagenesis of organic matter in lacustrine sediments. In: Engel MH, Macko SA, editors. Organic geochemistry, principles and applications. New York (NY): Plenum Press; 1993. p. 185.
  • Muri G, Wakeham SG, Pease TK, et al. Evaluation of lipid biomarkers as indicators of changes in organic matter delivery to sediments from Lake Planina, a remote mountain lake in NW Slovenia. Org Geochem. 2004;35:1083–1093. doi: 10.1016/j.orggeochem.2004.06.004
  • Rigo E, Rigoni RE, Lodea P, et al. Comparison of two lipases in the hydrolysis of oil and grease in wastewater of the swine meat industry. Ind Eng Chem Res. 2008;47:1760–1765. doi: 10.1021/ie0708834
  • Aluyor EO, Obahiagbon KO, Ori-jesu M. Biodegradation of vegetable oils: A review. Sci Res Essay. 2009;4:543–548.
  • Canuel EA, Martens CS. Seasonal variations in the sources and alteration of organic matter associated with recently deposited sediments. Org Geochem. 1993;20:563–577. doi: 10.1016/0146-6380(93)90024-6
  • Hernandez ME, Mead R, Peralba MC, et al. Origin and transport of n-alkane-2-ones in a subtropical estuary: potential biomarkers for seagrass-derived organic matter. Org Geochem. 2001;32:21–32. doi: 10.1016/S0146-6380(00)00157-1
  • Hoppe HG. Phosphatase activity in the sea. Hydrobiologia. 2003;493:187–200. doi: 10.1023/A:1025453918247
  • Marxsen J, Schmidt HH. Extracellular phosphatase activity in sediments of the Breitenbach, a central European mountain stream. Hydrobiologia. 1993;253:207–216. doi: 10.1007/BF00050739
  • Vidal M, Duarte CM, Agusti SM, et al. Alkaline phosphatase activities in the central Atlantic Ocean indicate large areas with phosphorus deficiency. Mar Ecol Progr Ser. 2003;262:43–53. doi: 10.3354/meps262043
  • Chróst R, Overbeck J. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in Lake Pluβsee (North German eutrophic lake). Microbiol Ecol. 1987;13:229–248. doi: 10.1007/BF02025000
  • Mudryk Z. Decomposition of organic and solubilization of inorganic phosphorus compounds by bacteria isolated from a marine sandy beach. Mar Biol. 2004;145:1227–1234. doi: 10.1007/s00227-004-1397-4
  • Zdanowski MK, Donachie SP. Bacteria in the sea-ice zone between Elephant Island and the South Orkneys during the Polish sea-ice zone expedition, (December 1988 to January 1989). Polar Biol. 1993;13:245–254. doi: 10.1007/BF00238760
  • Koch AL. The macroeconomics of bacterial growth. In: Fletcher M, Floodgate GD, editors. Bacteria in their natural environments. London: Academic Press; 1985. p. 1–42.
  • Harder W, Dijkhuizen L. Physiological responses to nutrient limitation. Annual Rev Microbiol. 1983;37:1–23. doi: 10.1146/annurev.mi.37.100183.000245
  • Chróst RJ, Siuda W. Ecology of microbial enzymes in lake ecosystems. In: Burns RC, Dick RP, editors. Microbial enzymes in the environment activity, ecology, and applications. New York (NY): Marcel Dekker; 2002. p. 35–72.
  • Taubea R, Ganzert L, Grossart HP, et al. Organic matter quality structures benthic fatty acid patterns and the abundance of fungi and bacteria in temperate lakes. Sci Tot Environ. 2018;610–611:469–481. doi: 10.1016/j.scitotenv.2017.07.256
  • Ruiz-Gonzalez C, Niño-García JP, Lapierre JF, et al. The quality of organic matter shapes the functional biogeography of bacterioplankton across boreal freshwater ecosystems. Glob Ecol Biogeogr. 2015;24:1487–1498. doi: 10.1111/geb.12356
  • Oest A, Alsaffar A, Fenner M, et al. Patterns of change in metabolic capabilities of sediment microbial communities in river and lake ecosystems. J Inter Microbiol. In press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.