380
Views
16
CrossRef citations to date
0
Altmetric
Articles

Treatment of greywater by forward osmosis technology: role of the operating temperature

, &
Pages 3434-3443 | Received 09 Feb 2018, Accepted 05 May 2018, Published online: 04 Jun 2018

References

  • Shannon MA, Bohn PW, Elimelech M, et al. Science and technology for water purification in the coming decades. Nature. 2008;452:301–310. doi: 10.1038/nature06599
  • Leal LH, Temmink H, Zeeman G, et al. Characterization and anaerobic biodegradability of grey water. Desalination. 2011;270:111–115. doi: 10.1016/j.desal.2010.11.029
  • Kariuki FW, Kotut K, Ngángá VG. The potential of a low cost technology for the greywater treatment. Open Environ. Eng. J. 2011;4:32–39. doi: 10.2174/1874829501104010032
  • Gabarro J, Batchelli L, Balaguer MD, et al. Grey water treatment at a sports centre for reuse in irrigation: a case study. Environ Technol. 2013;34:1385–1392. doi: 10.1080/09593330.2012.750382
  • Bani-Melhem K, Al-Qodah Z, Al-Shannag M, et al. On the performance of real grey water treatment using a submerged membrane bioreactor system. J Membr Sci. 2015;476:40–49. doi: 10.1016/j.memsci.2014.11.010
  • Fountoulakis MS, Markakis N, Petousi I, et al. Single house on-site grey water treatment using a submerged membrane bioreactor for toilet flushing. Sci Total Environ. 2016;551-552:706–711. doi: 10.1016/j.scitotenv.2016.02.057
  • Singh PS, Ray P, Trivedi JJ, et al. RO membrane treatment of domestic grey-water containing different detergent types. Desalin Water Treat. 2014;52:4071–4078. doi: 10.1080/19443994.2013.808393
  • Elimelech M, Phillip WA. The future of seawater desalination: energy, technology, and the environment. Science. 2011;333:712–717. doi: 10.1126/science.1200488
  • Cath TY, Childress AE, Elimelech M. Forward osmosis: principles, applications, and recent developments. J Membr Sci. 2006;281:70–87. doi: 10.1016/j.memsci.2006.05.048
  • Linares RV, Li Z, Sarp S, et al. Forward osmosis niches in seawater desalination and wastewater reuse. Water Res. 2014;66:122–139. doi: 10.1016/j.watres.2014.08.021
  • Ong RC, Chung TS. Fabrication and positron annihilation spectroscopy (PAS) characterization of cellulose triacetate membranes for forward osmosis. J Membr Sci. 2012;394-395:230–240. doi: 10.1016/j.memsci.2011.12.046
  • Zhang S, Wang KY, Chung TS, et al. Well-constructed cellulose acetate membranes for forward osmosis: minimized internal concentration polarization with an ultra-thin selective layer. J Membr Sci. 2010;360:522–535. doi: 10.1016/j.memsci.2010.05.056
  • Holloway RW, Childress AE, Dennett KE, et al. Forward osmosis for concentration of anaerobic digester centrate. Water Res. 2007;41:4005–4014. doi: 10.1016/j.watres.2007.05.054
  • Ansari AJ, Hai FI, Price WE, et al. Phosphorus recovery from digested sludge centrate using seawater-driven forward osmosis. Sep Purif Technol. 2016;163:1–7. doi: 10.1016/j.seppur.2016.02.031
  • Zhang J, She Q, Chang VW, et al. Mining nutrients (N, K, P) from urban source-separated urine by forward osmosis dewatering. Environ Sci Technol. 2014;48:3386–3394. doi: 10.1021/es405266d
  • Wang Z, Zheng J, Tang J, et al. A pilot-scale forward osmosis membrane system for concentrating low-strength municipal wastewater: performance and implications. Sci Rep. 2016;6: 21653(1–11).
  • Du X, Wang Y, Qu F, et al. Impact of bubbly flow in feed channel of forward osmosis for wastewater treatment: flux performance and biofouling. Chem Eng J. 2017;316:1047–1058. doi: 10.1016/j.cej.2017.02.031
  • Wang X, Wang C, Tang CY, et al. Development of a novel anaerobic membrane bioreactor simultaneously integrating microfiltration and forward osmosis membranes for low-strength wastewater treatment. J Membr Sci. 2017;527:1–7. doi: 10.1016/j.memsci.2016.12.062
  • Chekli L, Kim JE, El Saliby I, et al. Fertilizer drawn forward osmosis process for sustainable water reuse to grow hydroponic lettuce using commercial nutrient solution. Sep Purif Technol. 2017;181:18–28. doi: 10.1016/j.seppur.2017.03.008
  • Wong MCY, Martinez K, Ramon GZ, et al. Impacts of operating conditions and solution chemistry on osmotic membrane structure and performance. Desalination. 2012;287:340–349. doi: 10.1016/j.desal.2011.10.013
  • Arkhangelsky E, Wicaksana F, Tang CY, et al. Combined organic-inorganic fouling of forward osmosis hollow fiber membranes. Water Res. 2012;46:6329–6338. doi: 10.1016/j.watres.2012.09.003
  • Wang C, Gao B, Zhao P, et al. Exploration of polyepoxysuccinic acid as a novel draw solution in the forward osmosis process. RSC Adv. 2017;7:30687–30698. doi: 10.1039/C7RA04036A
  • Zhao S, Zou L. Effects of working temperature on separation performance, membrane scaling and cleaning in forward osmosis desalination. Desalination. 2011;278:157–164. doi: 10.1016/j.desal.2011.05.018
  • Jawor A, Hoek EMV. Effects of feed water temperature on inorganic fouling of brackish water RO membranes. Desalination. 2009;235:44–57. doi: 10.1016/j.desal.2008.07.004
  • Jin X, Jawor A, Kim S, et al. Effects of feed water temperature on separation performance and organic fouling of brackish water RO membranes. Desalination. 2009;239:346–359. doi: 10.1016/j.desal.2008.03.026
  • McCutcheon JR, Elimelech M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J Membr Sci. 2006;284:237–247. doi: 10.1016/j.memsci.2006.07.049
  • Zhao P, Gao BY, Xu SP, et al. Polyelectrolyte-promoted forward osmosis process for dye wastewater treatment - exploring the feasibility of using polyacrylamide as draw solute. Chem Eng J. 2015;264:32–38. doi: 10.1016/j.cej.2014.11.064
  • Heo J, Chu KH, Her N, et al. Organic fouling and reverse solute selectivity in forward osmosis: role of working temperature and inorganic draw solutions. Desalination. 2016;389:162–170. doi: 10.1016/j.desal.2015.06.012
  • Zhao P, Gao B, Yue Q, et al. Effect of high salinity on the performance of forward osmosis: water flux, membrane scaling and removal efficiency. Desalination. 2016;378:67–73. doi: 10.1016/j.desal.2015.09.028
  • You SJ, Wang XH, Zhong M, et al. Temperature as a factor affecting transmembrane water flux in forward osmosis: steady-state modeling and experimental validation. Chem Eng J. 2012;198-199:52–60. doi: 10.1016/j.cej.2012.05.087
  • Xie M, Price WE, Nghiem LD, et al. Effects of feed and draw solution temperature and transmembrane temperature difference on the rejection of trace organic contaminants by forward osmosis. J Membr Sci. 2013;438:57–64. doi: 10.1016/j.memsci.2013.03.031
  • Hawari AH, Kamal N, Altaee A. Combined influence of temperature and flow rate of feeds on the performance of forward osmosis. Desalination. 2016;398:98–105. doi: 10.1016/j.desal.2016.07.023
  • Phuntsho S, Vigneswaran S, Kandasamy J, et al. Influence of temperature and temperature difference in the performance of forward osmosis desalination process. J Membr Sci. 2012;415-416:734–744. doi: 10.1016/j.memsci.2012.05.065
  • Kim Y, Lee S, Shon HK, et al. Organic fouling mechanisms in forward osmosis membrane process under elevated feed and draw solution temperatures. Desalination. 2015;355:169–177. doi: 10.1016/j.desal.2014.10.041
  • Thiruvenkatachari R, Francis M, Cunnington M, et al. Application of integrated forward and reverse osmosis for coal mine wastewater desalination. Sep Purif Technol. 2016;163:181–188. doi: 10.1016/j.seppur.2016.02.034
  • McCutcheon JR, McGinnis RL, Elimelech M. Desalination by ammonia-carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance. J Membr Sci. 2006;278:114–123. doi: 10.1016/j.memsci.2005.10.048
  • McCutcheon JR, Elimelech M. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes. J Membr Sci. 2008;318:458–466. doi: 10.1016/j.memsci.2008.03.021
  • Negahban-Azar M, Sharvelle SE, Qian YL, et al. Leachability of chemical constituents in soil-plant systems irrigated with synthetic graywater. Environ Sci-Process Impacts. 2013;15:760–772. doi: 10.1039/c3em30685b
  • Van’t Hoff JH. Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und Gasen [The role of the osmotic pressure in the analogy between solutions and gases]. Z Phys Chem. 1887;1:481–508.
  • Lee KL, Baker RW, Lonsdale HK. Membranes for power generation by pressure-retarded osmosis. J Membr Sci. 1981;8:141–171. doi: 10.1016/S0376-7388(00)82088-8
  • McCutcheon JR, Elimelech M. Modeling water flux in forward osmosis: implications for improved membrane design. AIChE J. 2007;53:1736–1744. doi: 10.1002/aic.11197
  • APHA. Standard methods for the examination of water and wastewater. 21th ed. Washington (DC): American Public Health Association; 2012.
  • Schlichting H, Gersten K. Fundamentals of boundary-layer theory. 9th ed. Berlin Heidelberg: Springer; 2017.
  • Wang Z, Tang J, Zhu C, et al. Chemical cleaning protocols for thin film composite (TFC) polyamide forward osmosis membranes used for municipal wastewater treatment. J Membr Sci. 2015;475:184–192. doi: 10.1016/j.memsci.2014.10.032
  • Su JC, Yang Q, Teo JF, et al. Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes. J Membr Sci. 2010;355:36–44. doi: 10.1016/j.memsci.2010.03.003
  • Dong Y, Wang Z, Zhu C, et al. A forward osmosis membrane system for the post-treatment of MBR-treated landfill leachate. J Membr Sci. 2014;471:192–200. doi: 10.1016/j.memsci.2014.08.023
  • Lay WCL, Zhang JS, Tang CY, et al. Factors affecting flux performance of forward osmosis systems. J Membr Sci. 2012;394-395:151–168. doi: 10.1016/j.memsci.2011.12.035
  • Dariel MS, Kedem O. Thermoosmosis in semipermeable membranes. J Phys Chem. 1975;79:336–342. doi: 10.1021/j100571a010
  • Kestin J, Sokolov M, Wakeham WA. Viscosity of liquid water in the range −8 °C to 150 °C. J Phys Chem Ref Data. 1978;7:941–948. doi: 10.1063/1.555581
  • Xue W, Tobino T, Nakajima F, et al. Seawater-driven forward osmosis for enriching nitrogen and phosphorous in treated municipal wastewater: effect of membrane properties and feed solution chemistry. Water Res. 2015;69:120–130. doi: 10.1016/j.watres.2014.11.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.