741
Views
31
CrossRef citations to date
0
Altmetric
Articles

Recycling of sugar industry wastewater for single-cell protein production with supplemental carotenoids

ORCID Icon &
Pages 59-70 | Received 25 Jan 2018, Accepted 11 Jun 2018, Published online: 28 Jun 2018

References

  • Botha T, Blottnitz HV. A comparison of the environmental benefits of bagasse-derived electricity and fuel ethanol on a life-cycle basis. Energy Pol. 2006;34:2654–2661. doi: 10.1016/j.enpol.2004.12.017
  • Poddar PK, Sahu O. Quality and management of wastewater in sugar industry. Appl Water Sci. 2017;7:461–468. doi: 10.1007/s13201-015-0264-4
  • Jadhav PG, Vaidya NG, Dethe SB. Characterization and comparative study of cane sugar industry wastewater. Int J Chem Phys Sci. 2013;2:19–25.
  • Kushwaha JP. A review on sugar industry wastewater: sources, treatment technologies, and reuse. Desal Water Treat. 2015;53:309–318. doi: 10.1080/19443994.2013.838526
  • Lu H, Zhang G, Dai X, et al. A novel wastewater treatment and biomass cultivation system combining photosynthetic bacteria and membrane bioreactor technology. Desalination. 2013;322:176–181. doi: 10.1016/j.desal.2013.05.007
  • Saejung C, Thammaratana T. Biomass recovery during municipal wastewater treatment using photosynthetic bacteria and prospect of production of single cell protein for feedstuff. Environ Technol. 2016;37:3055–3061. doi: 10.1080/09593330.2016.1175512
  • Ponsano EHG, Lacava PD, Pinto MF. Chemical composition of Rhodocyclus gelatinosus biomass produced in poultry slaughterhouse wastewater. Braz Arch Biol Technol. 2003;46:143–147. doi: 10.1590/S1516-89132003000200001
  • Sabourin-Provost G, Hallenbeck PC. High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresource Technol. 2009;100:3513–3517. doi: 10.1016/j.biortech.2009.03.027
  • Zhao G, Zhang W, Zhang G. Production of single cell protein using waste capsicum powder produced during capsanthin extraction. Lett Appl Microbiol. 2010;50:187–191. doi: 10.1111/j.1472-765X.2009.02773.x
  • Chitapornpan C, Chiemchaisri W, Chiemchaisri R, et al. Organic carbon recovery and photosynthetic bacteria population in an anaerobic membrane photo-bioreactor treating food processing wastewater. Bioresource Technol. 2013;141:65–74. doi: 10.1016/j.biortech.2013.02.048
  • Yang A, Zhang G, Meng F, et al. Enhancing protein to extremely high content in Photosynthetic bacteria during biogas slurry treatment. Bioresource Technol. 2017;245:1277–1281. doi: 10.1016/j.biortech.2017.08.109
  • Lu H, Dong S, Zhang G, et al. Enhancing the auto-flocculation of photosynthetic bacteria to realize biomass recovery in brewery wastewater treatment. Environ Technol. 2018. doi:10.1080/09593330.2018.1439107.
  • Wang H, Zhang G, Peng M, et al. Synthetic white spirit wastewater treatment and biomass recovery by photosynthetic bacteria: feasibility and process influence factors. Int Biodeter Biodegr. 2016;113:134–138. doi: 10.1016/j.ibiod.2016.01.001
  • Zhou Q, Zhang G, Lu Y, et al. Feasibility study and process optimization of citric acid wastewater treatment and biomass production by photosynthetic bacteria. Desalin Water Treat. 2015;57:1–7.
  • Kaewsuk J, Thorasampan W, Thanuttamavong M, et al. Kinetic development and evaluation of membrane sequencing batch reactor (MSBR) with mixed cultures photosynthetic bacteria for dairy wastewater treatment. J Environ Manag. 2010;91:1161–1168. doi: 10.1016/j.jenvman.2010.01.012
  • Meng F, Yang A, Zhang G, et al. Effects of dissolved oxygen concentration on photosynthetic bacteria wastewater treatment: pollutants removal, cell growth and pigments production. Bioresource Technol. 2017;241:993–997. doi: 10.1016/j.biortech.2017.05.183
  • Hulsen T, Barry EM, Lu Y, et al. Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor. Water Res. 2016;100:486–495. doi: 10.1016/j.watres.2016.04.061
  • Prachanurak P, Chiemchaisri C, Chiemchaisri W, et al. Biomass production from fermented starch wastewater in photo-bioreactor with internal overflow recirculation. Bioresource Technol. 2014;165:129–136. doi: 10.1016/j.biortech.2014.03.119
  • Suwan D, Chitapornpan S, Honda R, et al. Conversion of organic carbon in food processing wastewater to photosynthetic biomass in photo-bioreactors using different light sources. Environ Eng Res. 2014;19:293–298. doi: 10.4491/eer.2014.S1.009
  • Lu H, Zhang G, Lu Y, et al. Using co-metabolism to accelerate synthetic starch wastewater degradation and nutrient recovery in photosynthetic bacterial wastewater treatment technology. Environ Technol. 2016;37:775–784. doi: 10.1080/09593330.2015.1084050
  • Peng M, Yang A, Chen Y, et al. Microbiology community changes during the start-up and operation of a photosynthetic bacteria-membrane bioreactor for wastewater treatment. Bioresource Technol Rep. 2018;1:1–8. doi: 10.1016/j.biteb.2018.01.003
  • Lu H, Han T, Zhang G, et al. Natural light-micro aerobic condition for PSB wastewater treatment: a flexible, simple and effective resource recovery wastewater treatment process. Environ Technol. 2017;39:1–9.
  • Lu H, Zhang G, Dai X, et al. Comparing three methods for photosynthetic bacteria separation and recycling during wastewater treatment. Desalin Water Treat. 2016;57:12467–12477. doi: 10.1080/19443994.2015.1053533
  • Larimer FW, Chain P, Hauser L, et al. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol. 2004;22:55–61. doi: 10.1038/nbt923
  • Sasikala C, Ramana CV. Biotechnological potentials of anoxygenic phototrophic bacteria. I. Production of single-cell protein, vitamins, ubiquinones, hormones, and enzymes and use in waste treatment. Adv Appl Microbiol. 1995;41:173–226. doi: 10.1016/S0065-2164(08)70310-1
  • Moreno J, Díaz-Gómez J, Nogareda C, et al. The distribution of carotenoids in hens fed on biofortified maize is influenced by feed composition, absorption, resource allocation and storage. Sci Rep. 2016. doi:10.1038/srep35346.
  • de Carvalho CCCR, Caramujo MJ. Carotenoids in aquatic ecosystems and aquaculture: a colorful business with implications for human health. Front Mar Sci. 2017. doi:10.3389/fmars.2017.00093.
  • Saejung C, Apaiwong P. Enhancement of carotenoid production in the new carotenoid-producing photosynthetic bacterium Rhodopseudomonas faecalis PA2. Biotechnol Bioprocess Eng. 2015;20:701–707. doi: 10.1007/s12257-015-0015-2
  • APHA, AWWA, WEF. Standard methods for the examination of water and wastewater. 8th ed. Washington (DC): American Public Health Association; 1992.
  • Abou-Shanab RIA, El-dalatony MM, El-Sheekh MM, et al. Cultivation of a new microalga, Micractinium reisseri, in municipal wastewater for nutrient removal, biomass, lipid, and fatty acid production. Biotechnol Bioprocess Eng. 2014;19:510–518. doi: 10.1007/s12257-013-0485-z
  • Hirayama O. Lipids and lipoprotein complex in photosynthetic tissue: 4 lipid and pigments of photosynthetic bacteria. Agric Biol Chem. 1968;32:34–41.
  • Sheng GP, Yu HQ, Yu Z. Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila. Appl Microbiol Biotechnol. 2005;67:125–130. doi: 10.1007/s00253-004-1704-5
  • Dubois M, Gilles KA, Hamiton JK, et al. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350–356. doi: 10.1021/ac60111a017
  • Burdock T, Brooks M, Ghaly A, et al. Effect of assay conditions on the measurement of dehydrogenase activity of Streptomyces venezuelae using triphenyl tetrazolium chloride. Adv Biosci Biotechnol. 2011;2:214–225. doi: 10.4236/abb.2011.24032
  • AOAC Official Methods of Analysis. Association of official analytical chemists. Arlington (VA): AOAC International; 2000.
  • Davies PS. The biological basis of wastewater treatment. Glasgow: Strathkelvin Instruments Ltd; 2005.
  • Xin L, Hong-Ying H, Ke G, et al. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technol. 2010;101:5494–5500. doi: 10.1016/j.biortech.2010.02.016
  • Zhou Q, Zhang P, Zhang G, et al. Biomass and pigments production in photosynthetic bacteria wastewater treatment: effects of photoperiod. Bioresource Technol. 2015;190:196–200. doi: 10.1016/j.biortech.2015.04.092
  • Caufield JH, Abreu M, Wimble C, et al. Protein complexes in bacteria. PLoS Comput Biol. 2015. doi:10.1371/journal.pcbi.1004107.
  • Basan M, Zhu M, Dai X, et al. Inflating bacterial cells by increased protein synthesis. Mol Syst Biol. 2015;11:836. doi: 10.15252/msb.20156178
  • Shah FA, Mahmood Q, Shah MM, et al. Microbial ecology of anaerobic digesters: The key players of anaerobiosis. Scientific World J. 2014. doi:10.1155/2014/183752.
  • Puyol D, Batstone DJ, Hulsen T, et al. Resource recovery from wastewater by biological technologies: opportunities, challenges, and prospects. Front Microbiol. 2017. doi:10.3389/fmicb.2016.02106.
  • Saejung C, Ampornpat W. Production and nutritional performance of carotenoid-producing photosynthetic bacterium Rhodopseudomonas faecalis PA2 grown in domestic wastewater intended for animal feed production. Waste Biomass Valor. 2017. doi:10.1007/s12649-017-0070-3.
  • Wang G, Grammel H, Abou-Aisha K, et al. High-level production of the industrial product lycopene by the photosynthetic bacterium Rhodospirillum rubrum. Appl Environ Microbiol. 2012;78:7205–7215. doi: 10.1128/AEM.00545-12
  • Phadwal K, Singh PK. Effect of nutrient depletion on beta-carotene and glycerol accumulation in two strains of Dunaliella sp. Bioresource Technol. 2003;90:55–58. doi: 10.1016/S0960-8524(03)00090-7
  • Forjan E, Garbayo I, Casal C, et al. Enhancement of carotenoid production in Nannochloropsis by phosphate and sulphur limitation. Com Cur Res Ed Topics Trends Appl Microbiol. 2007;1: 356–364.
  • Grobben GJ, Smith M, Sikkema J, et al. Influence of fructose and glucose on the production of exopolysaccharides and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772. Appl Microbiol Biotechnol. 1996;46:279–284. doi: 10.1007/s002530050817
  • Grobben GJ, Van Casteren WHM, Schols HA, et al. Analysis of the exopolysaccharides produced by lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 grown in continuous culture on glucose and fructose. Appl Microbiol Biotechnol. 1997;48:516–521. doi: 10.1007/s002530051089
  • Yuksekdag ZN, Aslim B. Influence of different carbon sources on exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus (B3, G12) and Streptococcus thermophilus (W22). Braz Arch Biol Technol. 2008;51:581–585. doi: 10.1590/S1516-89132008000300019
  • Solomon S, Shahi HN, Ishwar Singh PC, et al. Chemical ripening of sugarcane: sucrose enhancing response of dinitrosocifrol and triacotanol. Sugar Tech. 2001;3:53–54. doi: 10.1007/BF02945531
  • Ma B, Zhang G, Song H, et al. A new photosynthetic bacteria consortium and treatment of low-COD wastewaters. In: Han Y, editor. Advances in energy and environmental materials. CMC 2017. Springer proceedings in energy. Singapore: Springer; 2018. p. 913–919.
  • Gao L, Chi Z, Sheng J, et al. Single cell protein production from Jerusalem artichoke extract by a recently isolated marine yeast Cryptococcus aureus G7a and its nutritive analysis. Appl Environ Microbiol. 2007;77:825–832.
  • Patil RS, Ghormade V, Deshpande MV. Chitinolytic enzymes: An exploration. Enz Microb Technol. 2000;26:473–483. doi: 10.1016/S0141-0229(00)00134-4
  • Saeed M, Yasmin I, Murtaza MA, et al. Single cell proteins: A novel value-added food product. Pak J Food Sci. 2016;26:211–217.
  • Konlani S, Delgenes JP, Moletta R, et al. Optimization of cell yield of Candida krusei SO1 and Saccharomyces sp. LK3G cultured in sorghum hydrolysate. Bioresource Technol. 1996;57:275–281. doi: 10.1016/S0960-8524(96)00079-X
  • Nigam JN. Single cell protein from pineapple cannery effluent. World J Microbiol Biotechnol. 1998;14:693–696. doi: 10.1023/A:1008853303596
  • Nigam JN. Cultivation of Candida langeronii in sugar cane bagasse hemicellulosic hydrolyzate for the production of single cell protein. World J Microb Biot. 2000;16:367–372. doi: 10.1023/A:1008922806215
  • Zhang ZY, Jin B, Bai ZH, et al. Production of fungal biomass protein using micro-fungi from winery wastewater treatment. Bioresource Technol. 2008;99:3871–3876. doi: 10.1016/j.biortech.2006.10.047
  • Garcia J, Mujeriego R, Hernandez-Marine M. High rate algal pond operating strategies for urban wastewater nitrogen removal. J Appl Phycol. 2000;12:331–339. doi: 10.1023/A:1008146421368
  • Shipman RH, Kao IC, Fan LT. Single-cell protein production by photosynthetic bacteria cultivation in agricultural by-products. Biotechnol Bioeng. 1975;17:1561–1570. doi: 10.1002/bit.260171102
  • FAO. Amino acid content of foods and biological data on proteins: FAO nutritional studies no. 24. Rome; 1980. p. 259–275.
  • Kobayashi M, Kurata SI. The mass culture and cell utilization of photosynthetic bacteria. Process Biochem. 1978;13:27–30.
  • Zhang T, Liu LL, Song ZL, et al. Yang, biogas production by co-digestion of goat manure with three crop residues. Plos One. 2013. doi:10.1371/journal.pone.0066845.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.