517
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Selecting the most suitable microalgae species to treat the effluent from an anaerobic membrane bioreactor

, , , &
Pages 267-276 | Received 20 Dec 2017, Accepted 21 Jun 2018, Published online: 10 Jul 2018

References

  • Ho J, Sung S. Methanogenic activities in anaerobic membrane bioreactors (AnMBR) treating synthetic municipal wastewater. Bioresource Technol. 2010;101:2191–2196. doi: 10.1016/j.biortech.2009.11.042
  • Podevin M, De Francisci D, Holdt SL, et al. Effect of nitrogen source and acclimatization on specific growth rates of microalgae determined by a high-throughput in vivo microplate autofluorescence method. J Appl Phycol. 2015;27:1415–1423. doi: 10.1007/s10811-014-0468-2
  • Commission Directive 98/15/EC of 27 February 1998 amending Council Directive 91/271/EEC with respect to certain requirements established in Annex I thereof. Available from: http://data.europa.eu/eli/dir/1998/15/1998-03-27
  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM. Microalgae and wastewater treatment. Saudi J Biol Sci. 2012;19:257–275. doi: 10.1016/j.sjbs.2012.04.005
  • Arbib Z, Ruíz J, Álvarez-Díaz P, et al. Capability of different microalgae species for phytoremediation processes: wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Water Res. 2014;49:465–474. doi: 10.1016/j.watres.2013.10.036
  • Choi HJ, Lee SM. Effect of the N:P ratio on biomass productivity and nutrient removal from municipal wastewater. Bioprocess Biosyst Eng. 2015;38:761–766. doi: 10.1007/s00449-014-1317-z
  • Woertz I, Feffer A, Lundqusit T, et al. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng. 2009;135(11):1115–1122. doi: 10.1061/(ASCE)EE.1943-7870.0000129
  • Wang L, Min M, Li Y, et al. Cultivation of green algae chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotech. 2010;162:1174–1186. doi: 10.1007/s12010-009-8866-7
  • Kong QX, Li L, Martinez B, et al. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol. 2010;160:9–18. doi: 10.1007/s12010-009-8670-4
  • Ruiz J, Arbib Z, Álvarez-Díaz PD, et al. Influence of light presence and biomass concentration on nutrient kinetic removal from urban wastewater by Scenedesmus obliquus. J Biotechnol. 2014;178:32–37. doi: 10.1016/j.jbiotec.2014.03.001
  • Sforza E, Ramos-Tercero EA, Gris B, et al. Integration of Chlorella protothecoides production in wastewater treatment plant: from lab measurements to process design. Algal Res. 2014;6:223–233. doi: 10.1016/j.algal.2014.06.002
  • Delgadillo-Mirquez L, Lopes F, Taidi B, et al. Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnol Rep. 2016;11:18–26. doi: 10.1016/j.btre.2016.04.003
  • Martínez ME, Sánchez S, Jiménez JM, et al. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technol. 2000;73:263–272. doi: 10.1016/S0960-8524(99)00121-2
  • Tan X, Chu H, Zhang Y, et al. Chlorella pyrenoidosa cultivation using anaerobic digested starch processing wastewater in an airlift circulation photobioreactor. Bioresource Technol. 2014;170:538–548. doi: 10.1016/j.biortech.2014.07.086
  • Chinnasamy S, Ramakrishnan B, Bhatnagar A, et al. Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. Int J Mol Sci. 2009;10:518–532. doi: 10.3390/ijms10020518
  • Abinandan S, Shanthakumar S (2015) Challenges and opportunities in application of microalgae (Chlorophyta) for wastewater treatment: a review. Renew Sust Energ Rev 52: 123–132 doi: 10.1016/j.rser.2015.07.086
  • Aslan S, Kapdan IK. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 2006;28:64–70. doi: 10.1016/j.ecoleng.2006.04.003
  • Ras M, Steyer JP, Bernard O. Temperature effect on microalgae: a crucial factor for outdoor production. Rev Environ Sci Biotechnol. 2013;12(2):153–164. doi: 10.1007/s11157-013-9310-6
  • Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biot. 2004;65:635–648. doi: 10.1007/s00253-004-1647-x
  • Ruiz-Martinez A, Martin Garcia N, Romero I, et al. Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent. Bioresource Bioresource Technol. 2012;126:247–253. doi: 10.1016/j.biortech.2012.09.022
  • Markou G, Nerantzis E. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnol Adv. 2013;31:1532–1542. doi: 10.1016/j.biotechadv.2013.07.011
  • Kilham S, Kreeger D, Lynn S, et al. COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia. 1998;377:147–159. doi: 10.1023/A:1003231628456
  • Robles A, Durán F, Ruano MV, et al. Instrumentation, control and automation for submerged anaerobic membrane bioreactors. Environ Technol. 2015;36(14):1795–1806. doi: 10.1080/09593330.2015.1012180
  • Giménez JB, Robles A, Carretero L, et al. Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresour Technol. 2011;102:8799–8806. doi: 10.1016/j.biortech.2011.07.014
  • González-Camejo J, Serna-García R, Viruela A, et al. Short and long-term experiments on the effect of sulphide on microalgae cultivation in tertiary sewage treatment. Bioresour Technol. 2017;244:15–22. doi: 10.1016/j.biortech.2017.07.126
  • López-Elías JA, Esquer-Miranda E, Martínez-Porchas M, et al. The effect of inoculation time and inoculum concentration on the productive response of Tetraselmis chuii (Butcher, 1958) mass cultured in f/2 and 2-f media. Arch Biol Sci Belgrade. 2011;63(3):557–562. doi: 10.2298/ABS1103557L
  • Chinnasamy S, Bhatnagar A, Hunt RW, et al. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technol. 2010;101:3097–3105. doi: 10.1016/j.biortech.2009.12.026
  • Lürling M, Eshetu F, Faassen EJ, et al. Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biol. 2013;58:552–559. doi: 10.1111/j.1365-2427.2012.02866.x
  • Vítová M, Binová K, Hlavová M, et al. Chlamydomonas reinhardtii: duration of its cell cycle and phases at growth rates affected by temperature. Planta. 2011;234:599–608. doi: 10.1007/s00425-011-1427-7
  • Wu LF, Chen PC, Lee CM. The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. Int Biodeterior Biodegradation. 2013;85:506–510. doi: 10.1016/j.ibiod.2013.05.016
  • APHA, AWWA, WEF. Standard methods for the examination of waters and wastewaters. 22nd ed. Washington (DC): McGraw-Hill Companies Inc.; 2012.
  • Pachés M, Romero I, Hermosilla Z, et al. PHYMED: an ecological classification system for the water framework directive based on phytoplankton community composition. Ecol Indic. 2012;19:15–23. doi: 10.1016/j.ecolind.2011.07.003
  • Rasoul-Amini S, Montazeri-Najafabady N, Shaker S, et al. Removal of nitrogen and phosphorus from wastewater using microalgae free cells in bath culture system. Biocatal Agric Biotechnol. 2014;3:126–131.
  • Reynolds C. Ecology of phytoplankton. New York: Cambridge University Press; 2006.
  • Ruiz-Martinez A, Serralta J, Pachés M, et al. Mixed microalgae culture for ammonium removal in the absence of phosphorus: effect of phosphorus supplementation and process modeling. Process Biochem. 2014;49:2249–2257. doi: 10.1016/j.procbio.2014.09.002
  • Stockenreiter M, Haupt F, Seppälä J, et al. Nutrient uptake and lipid yield in diverse microalgal communities grown in wastewater. Algal Res. 2016;15:77–82. doi: 10.1016/j.algal.2016.02.013
  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technol. 2010;101:58–64. doi: 10.1016/j.biortech.2009.02.076
  • Sacristán de Alva M, Víctor M, Luna-Pabello VM, et al. Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production. Bioresource Technol. 2013;146:744–748. doi: 10.1016/j.biortech.2013.07.061
  • Dickinson K E, Whitney CG, McGinn PJ. Nutrient remediation rates in municipal wastewater and their effect on biochemical composition of the microalga Scenedesmus sp. AMDD. Algal Res. 2013;2:127–134. doi: 10.1016/j.algal.2013.01.009
  • Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev. 2013;19:360–369. doi: 10.1016/j.rser.2012.11.030
  • Yao B, Xi B, Hu C, et al. A model and experimental study of phosphate uptake kinetics in algae: considering surface adsorption and P-stress. J Environ Sci. 2011;23(2):189–198. doi: 10.1016/S1001-0742(10)60392-0
  • Powel N, Shilton A, Pratt S, et al. Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ Sci Technol. 2008;42:5958–5962. doi: 10.1021/es703118s
  • Patel A, Suzelle B, Lefsrud M. Microalgae for phosphorus removal and biomass production: a six species screen for dual-purpose organisms. Glob Change Biol Bioenerg. 2012;4:485–495. doi: 10.1111/j.1757-1707.2012.01159.x
  • Griffiths MJ, Harrison STL. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol. 2009;21:493–507. doi: 10.1007/s10811-008-9392-7
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306. doi: 10.1016/j.biotechadv.2007.02.001
  • Scragg AH, Illman AM, Carden A, et al. Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenerg. 2002;23:67–73. doi: 10.1016/S0961-9534(02)00028-4
  • De Morais MG, Vieira Costa JA. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energ Convers Manage. 2007;48:2169–2173. doi: 10.1016/j.enconman.2006.12.011
  • Yoo C, Jun S, Lee J, et al. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technol. 2010;101:571–574. doi: 10.1016/j.biortech.2010.06.073
  • Lau PS, Tam NFY, Wong YS. Effect of algal density on nutrient removal from primary settled wastewater. Environ Pollut. 1995;89:59–66. doi: 10.1016/0269-7491(94)00044-E
  • Rodrigo MA, Rojo C, Larrosa J, et al. Influencia de la concentración de nutrientes y la herviboría sobre la estructura y la función de una comunidad algal. Limnetica. 2007;26(1):183–198.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.