319
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Enhanced adsorption of Cd(II) using a composite of poly(acrylamide-co-sodium acrylate) incorporated LDH@MoS24

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 357-365 | Received 15 Jan 2018, Accepted 05 Jul 2018, Published online: 27 Jul 2018

References

  • The Ministry of Environmental Protection. 2014. Available from: http://www.mep.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm.
  • Guo G, Zhou Q, Ma LQ. Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess. 2006;116:513–528. doi: 10.1007/s10661-006-7668-4
  • Bolan NS, Adriano DC, Duraisamy P, et al. Immobilization and phytoavailability of cadmium in variable charge soils. III. Effect of biosolid compost addition. Plant Soil. 2003;256:231–241. doi: 10.1023/A:1026288021059
  • Wang Y, Ye G, Chen H, et al. Functionalized metal-organic framework as a new platform for efficient and selective removal of cadmium(II) from aqueous solution. J Mater Chem A. 2015;3:15292–15298. doi: 10.1039/C5TA03201F
  • Fan HT, Liu JX, Yao H, et al. Ionic imprinted silica-supported hybrid sorbent with an anchored chelating Schiff base for selective removal of cadmium(II) ions from aqueous media. Ind Eng Chem Res. 2014;53:369–378. doi: 10.1021/ie4027814
  • Yu L, Liu X, Yuan W, et al. Confined Flocculation of Ionic Pollutants by Poly(L-dopa)-Based Polyelectrolyte Complexes in Hydrogel Beads for Three-Dimensional, Quantitative, Efficient Water Decontamination. Langmuir ACS J Surf Colloids. 2015;31:6351–6366. doi: 10.1021/acs.langmuir.5b01084
  • Yang Y, Xie Y, Pang L, et al. Preparation of reduced graphene oxide/poly(acrylamide) nanocomposite and its adsorption of Pb(II) and methylene blue. Langmuir ACS J Surf Colloids. 2013;29:10727–10736. doi: 10.1021/la401940z
  • Dragan ES, Apopei Loghin DF, Cocarta AI. Efficient sorption of Cu2+ by composite chelating sorbents based on potato starch-graft-polyamidoxime embedded in chitosan beads. ACS Appl Mater Interfaces. 2014;6:16577–16592. doi: 10.1021/am504480q
  • Yu Z, Duong B, Abbitt D, et al. Highly ordered MnO₂ nanopillars for enhanced supercapacitor performance. Adv Mater. 2013;25:3302–3306. doi: 10.1002/adma.201300572
  • Zhang Q, Teng J, Zhang Z, et al. Unique and outstanding cadmium sequestration by polystyrene-supported nanosized zirconium hydroxides: a case study. RSC Adv. 2015;5:55445–55452. doi: 10.1039/C5RA09628F
  • Peng L, Zeng Q, Tie B, et al. Manganese dioxide nanosheet suspension: A novel absorbent for cadmium(II) contamination in waterbody. J Colloid Interface Sci. 2015;456:108–115. doi: 10.1016/j.jcis.2015.06.017
  • Tang Q, Wu J, Sun H, et al. Synthesis of polyacrylate/poly(ethylene glycol) hydrogel and its absorption properties for heavy metal ions and dye. Polym Compos. 2009;30:1183–1189. doi: 10.1002/pc.20676
  • Peng L, Xu Y, Zhou F, et al. Enhanced removal of Cd(II) by poly(acrylamid e - co -sodium acrylate) water-retaining agent incorporated nano hydrous manganese oxide. Mater Des. 2016;96:195–202. doi: 10.1016/j.matdes.2016.02.025
  • Xu D, Tan X, Chen C, et al. Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. J Hazard Mater. 2008;154:407–416. doi: 10.1016/j.jhazmat.2007.10.059
  • Liu JF, Zhao ZS, Jiang GB. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol. 2015;42:6949–6954. doi: 10.1021/es800924c
  • Mahmoud ME, Nabil GM, Mahmoud SME. High performance nano-zirconium silicate adsorbent for efficient removal of copper (II), cadmium (II) and lead (II). J Environ Chem Eng. 2015;3:1320–1328. doi: 10.1016/j.jece.2014.11.027
  • Sheela T, Nayaka YA, Viswanatha R, et al. Kinetics and thermodynamics studies on the adsorption of Zn(II), Cd(II) and Hg(II) from aqueous solution using zinc oxide nanoparticles. Powder Technol. 2012;217:163–170. doi: 10.1016/j.powtec.2011.10.023
  • Ma S, Chen Q, Li H, et al. Highly selective and efficient heavy metal capture with polysulfide intercalated layered double hydroxides. J Mater Chem A. 2014;2:10280–10289. doi: 10.1039/C4TA01203H
  • Ma S, Huang L, Ma L, et al. Efficient uranium capture by polysulfide/layered double hydroxide composites. J Am Chem Soc. 2015;137:3670–3677. doi: 10.1021/jacs.5b00762
  • Ma S, Shim Y, Islam SM, et al. Efficient Hg vapor capture with polysulfide intercalated layered double hydroxides. Chem Mater. 2014;26:5004–5011. doi: 10.1021/cm5020477
  • Ma L, Wang Q, Islam SM, et al. Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS42- ion. J Am Chem Soc. 2016;138:2858–2866. doi: 10.1021/jacs.6b00110
  • Ma S, Fan C, Du L, et al. Intercalation of macrocyclic crown ether into well-crystallized LDH: formation of staging structure and secondary host−guest reaction. Chem Mater. 2009;21:3602–3610. doi: 10.1021/cm9007393
  • Copello GJ, Mebert AM, Raineri M, et al. Removal of dyes from water using chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materials obtained by the sol-gel method. J Hazard Mater. 2011;186:932–939. doi: 10.1016/j.jhazmat.2010.11.097
  • Kangwansupamonkon W, Jitbunpot W, Kiatkamjornwong W. Photocatalytic efficiency of TiO2/poly[acrylamide-co-(acrylic acid)] composite for textile dye degradation. Polym Degrad Stab. 2010;95:1894–1902. doi: 10.1016/j.polymdegradstab.2010.04.019
  • Ma L, Islam SM, Liu H, et al. Selective and efficient removal of toxic oxoanions of As(III), As(V) and Cr(VI) by layered double hydroxide intercalated with MoS42-. Chem Mater. 2017;29:3274–3284. doi: 10.1021/acs.chemmater.7b00618
  • Li KR, Gu XQ, Hao DB, et al. Synthesis and characterization of Mg-Al hydrotalcite-like compounds as well as their catalytic performance for the condensation of acetone. J Mol Catal. 2010;24:309–314.
  • Davis JA, Leckie JO. Surface ionization and complexation at the oxide/water interface II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions. J Colloid Interface Sci. 1978;67:90–107. doi: 10.1016/0021-9797(78)90217-5
  • Zheng X, Wu D, Su T, et al. Magnetic nanocomposite hydrogel prepared by ZnO-initiated photopolymerization for La (III) adsorption. ACS Appl Mater Interfaces. 2014;6:19840–19849. doi: 10.1021/am505177c
  • Wang J, Li Z. Enhanced selective removal of Cu(II) from aqueous solution by novel polyethylenimine-functionalized ion imprinted hydrogel: behaviors and mechanisms. J Hazard Mater. 2015;300:18–28. doi: 10.1016/j.jhazmat.2015.06.043
  • Zheng Y, Wang W, Gong Z, et al. Enhanced selectivity for heavy metals using polyaniline-modified hydrogel. Ind Eng Chem Res. 2013;52:4957–4961. doi: 10.1021/ie302562f
  • Tran L, Wu P, Zhu Y, et al. Highly enhanced adsorption for the removal of Hg(II) from aqueous solution by mercaptoethylamine/mercaptopropyltrimethoxysilane functionalized vermiculites. J Colloid Interface Sci. 2015;445:348–356. doi: 10.1016/j.jcis.2015.01.006
  • Nicholson JW, Wilson AD. Thermal behaviour of films of partially neutralized poly(acrylic acid). 1: influence of metal ions. Polym Int. 2015;19:67–72.
  • Cumbal L, Sengupta AK. Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: role of donnan membrane effect. Environ Sci Technol. 2005;39:6508–6515. doi: 10.1021/es050175e
  • Sarkar S, Sengupta AK, Prakash P. The Donnan membrane principle: opportunities for sustainable engineered processes and materials. Environ Sci Technol. 2010;44:1161–1166. doi: 10.1021/es9024029
  • Su Q, Pan Q, Wan S, et al. Use of hydrous manganese dioxide as a potential sorbent for selective removal of lead, cadmium, and zinc ions from water. J Colloid Interface Sci. 2010;349:607–612. doi: 10.1016/j.jcis.2010.05.052
  • Zhang Q, Pan B, Zhang W, et al. Selective sorption of lead, cadmium and zinc ions by a polymeric cation exchanger containing nano-Zr(HPO3S)2. Environ Sci Technol. 2008;42:4140–4145. doi: 10.1021/es800354b
  • Pan B, Li Z, Zhang Y, et al. Acid and organic resistant nano-hydrated zirconium oxide (HZO)/polystyrene hybrid adsorbent for arsenic removal from water. Chem Eng J. 2014;248:290–296. doi: 10.1016/j.cej.2014.02.093
  • Turner NH, Murday JS, Ramaker DE. Summary abstract: quantitative determination of the surface composition of sulfur-bearing anion mixtures by auger electron spectroscopy. J Vac Sci Technol. 1980;17:214–215. doi: 10.1116/1.570437
  • Islam SM, Vanishri S, Li H, et al. Cs2Hg3S4: A Low-dimensional direct bandgap semiconductor. Chem Mater. 2015;27:370–378. doi: 10.1021/cm504089r
  • Benoist L, Gonbeau D, Pfister-Guillouzo G, et al. XPS analysis of oxido-reduction mechanisms during lithium intercalation in amorphous molybdenum oxysulfide thin films. Solid State Ionics. 1995;76:81–89. doi: 10.1016/0167-2738(94)00226-I
  • Quagraine E, Georgakaki I, Coucouvanis D. Reactivity and kinetic studies of (NH4)2(MoS4) in acidic aqueous solution: possible relevance to the angiostatic function of the MoS42- ligand. J Inorg Biochem. 2009;103:143–155. doi: 10.1016/j.jinorgbio.2008.09.015
  • Ye HL, Wang L, Deng S, et al. Amorphous MoS3 infiltrated with carbon nanotubes as an advanced anode material of sodium-Ion batteries with large gravimetric, areal, and volumetric capacities. Adv Energy Mater. 2016;7:1601602. doi: 10.1002/aenm.201601602
  • Fan QJ, Huang YN, Zhang C, et al. Superior nanoporous graphitic carbon nitride photocatalyst coupled with CdS quantum dots for photodegradation of RhB. Catal Today. 2016;264:250–256. doi: 10.1016/j.cattod.2015.08.006
  • Han JF, Liao C, Cha LM, et al. TEM and XPS studies on CdS/CIGS interfaces. J Phys Chem Solids. 2014;75:1279–1283. doi: 10.1016/j.jpcs.2014.06.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.