699
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Biodegradation of pharmaceuticals and personal care products in the sequential combination of activated sludge treatment and soil aquifer treatment

ORCID Icon, , &
Pages 378-388 | Received 14 Dec 2017, Accepted 08 Jul 2018, Published online: 30 Jul 2018

References

  • Onesios KM, Yu JT, Bouwer EJ. Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review. Biodegradation. 2009;20(4):441–466. doi: 10.1007/s10532-008-9237-8
  • Zhang B, Zhao H, Zhou S, et al. A novel UASB–MFC–BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation. Bioresour Technol. 2009;100(23):5687–5693. doi: 10.1016/j.biortech.2009.06.045
  • Yu K, Li B, Zhang T. Direct rapid analysis of multiple PPCPs in municipal wastewater using ultrahigh performance liquid chromatography–tandem mass spectrometry without SPE pre-concentration. Anal Chim Acta. 2012;738:59–68. doi: 10.1016/j.aca.2012.05.057
  • He K, Echigo S, Itoh S. Effect of operating conditions in soil aquifer treatment on the removals of pharmaceuticals and personal care products. Sci Total Environ. 2016;565:672–681. doi: 10.1016/j.scitotenv.2016.04.148
  • Kong Z, Feng C, Chen N, et al. A soil infiltration system incorporated with sulfur-utilizing autotrophic denitrification (SISSAD) for domestic wastewater treatment. Bioresour Technol. 2014;159:272–279. doi: 10.1016/j.biortech.2014.02.079
  • Maeng S, Sharma S, Lekkerkerker-Teunissen K, et al. Occurrence and fate of bulk organic matter and pharmaceutically active compounds in managed aquifer recharge: a review. Water Res. 2011;45(10):3015–3033. doi: 10.1016/j.watres.2011.02.017
  • Onesios K, Bouwer E. Biological removal of pharmaceuticals and personal care products during laboratory soil aquifer treatment simulation with different primary substrate concentrations. Water Res. 2012;46(7):2365–2375. doi: 10.1016/j.watres.2012.02.001
  • Nakada N, Shinohara H, Murata A, et al. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Res. 2007;41(19):4373–4382. doi: 10.1016/j.watres.2007.06.038
  • Yamamoto H, Nakamura Y, Moriguchi S, et al. Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Water Res. 2009;43(2):351–362. doi: 10.1016/j.watres.2008.10.039
  • Alidina M, Li D, Drewes J. Investigating the role for adaptation of the microbial community to transform trace organic chemicals during managed aquifer recharge. Water Res. 2014;56:172–180. doi: 10.1016/j.watres.2014.02.046
  • Zhao X, Chen Z, Wang X, et al. Remediation of pharmaceuticals and personal care products using an aerobic granular sludge sequencing bioreactor and microbial community profiling using Solexa sequencing technology analysis. Bioresour Technol. 2015;179:104–112. doi: 10.1016/j.biortech.2014.12.002
  • Kassotaki E, Buttiglieri G, Ferrando-Climent L, et al. Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products. Water Res. 2016;94:111–119. doi: 10.1016/j.watres.2016.02.022
  • Stadler LB, Love NG. Impact of microbial physiology and microbial community structure on pharmaceutical fate driven by dissolved oxygen concentration in nitrifying bioreactors. Water Res. 2016;104:189–199. doi: 10.1016/j.watres.2016.08.001
  • Takabe Y, Kameda I, Suzuki R, et al. Changes of microbial substrate metabolic patterns through a wastewater reuse process, including WWTP and SAT concerning depth. Water Res. 2014;60:105–117. doi: 10.1016/j.watres.2014.04.036
  • Chefetz B, Stimler K, Shechter M, et al. Interactions of sodium azide with triazine herbicides: effect on sorption to soils. Chemosphere. 2006;65(2):352–357. doi: 10.1016/j.chemosphere.2006.03.006
  • Ternes T, Joss A. Human pharmaceuticals, hormones and fragrances. London: IWA; 2007.
  • Beardall J. The fate of pharmaceuticals and personal care products in conventional and engineered on-site wastewater drain fields. Logan, Utah: Utah State University; 2015.
  • Qi Y, Zhang TC, Ma R. Properties of soil particle size fractions and their contribution on fate and transport of hormones in soil environment. In: Emerging micro-pollutants in the environment: occurrence, fate, and distribution. ACS Symposium Series. Vol. 1198. American Chemical Society; 2015. p. 75–96.
  • Rauch T, Drewes JE. Quantifying biological organic carbon removal in groundwater recharge systems. J Environ Eng. 2005;131(6):909–923. doi: 10.1061/(ASCE)0733-9372(2005)131:6(909)
  • Salomo S, Munch C, Roske I. Evaluation of the metabolic diversity of microbial communities in four different filter layers of a constructed wetland with vertical flow by Biolog (TM) analysis. Water Res. 2009;43(18):4569–4578. doi: 10.1016/j.watres.2009.08.009
  • Kuczynski J, Stombaugh J, Walters WA, et al. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Microbiol. 2012; Chapter 1:Unit 1E.5.
  • Rice EW, Baird RB, Eaton AD, et al. Standard methods for the examination of water and wastewater. 22nd ed. Denver, Colorado: American Public Health Association; 2012.
  • Muntau M, Schulz M, Jewell KS, et al. Evaluation of the short-term fate and transport of chemicals of emerging concern during soil-aquifer treatment using select transformation products as intrinsic redox-sensitive tracers. Sci Total Environ. 2017;583:10–18. doi: 10.1016/j.scitotenv.2016.12.165
  • Yonetani T, Echigo S, Itoh S. Fate of selected pharmaceuticals and their metabolites in soil aquifer treatment. J Water Reuse Desal. 2017;7(2):142–151. doi: 10.2166/wrd.2016.208
  • Monteiro SC, Boxall A. Factors affecting the degradation of pharmaceuticals in agricultural soils. Environ Toxicol Chem. 2009;28(12):2546–2554. doi: 10.1897/08-657.1
  • Buser H, Poiger T, Muller M. Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater. Environ Sci Technol. 1999;33(15):2529–2535. doi: 10.1021/es981014w
  • Bernhard M, Muller J, Knepper T. Biodegradation of persistent polar pollutants in wastewater: comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment. Water Res. 2006;40(18):3419–3428. doi: 10.1016/j.watres.2006.07.011
  • Bertelkamp C, Verliefde A, Reynisson J, et al. A predictive multi-linear regression model for organic micropollutants, based on a laboratory-scale column study simulating the river bank filtration process. J Hazard Mater. 2016;304:502–511. doi: 10.1016/j.jhazmat.2015.11.003
  • Haritash A, Kaushik C. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater. 2009;169(1–3):1–15. doi: 10.1016/j.jhazmat.2009.03.137
  • Jones OA, Lester JN, Voulvoulis N. Pharmaceuticals: a threat to drinking water? Trends Biotechnol. 2005;23(4):163–167. doi: 10.1016/j.tibtech.2005.02.001
  • Jeguirim M, Limousy L. Process engineering for pollution control and waste minimization. Environ Sci Pollut Res. 2017;24(11):9827–9830. doi: 10.1007/s11356-017-8936-2
  • Scott M, Jones M. The biodegradation of surfactants in the environment. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2000;1508(1–2):235–251. doi: 10.1016/S0304-4157(00)00013-7
  • Dawas-Massalha A, Gur-Reznik S, Lerman S, et al. Co-metabolic oxidation of pharmaceutical compounds by a nitrifying bacterial enrichment. Bioresour Technol. 2014;167:336–342. doi: 10.1016/j.biortech.2014.06.003
  • Quintana J, Weiss S, Reemtsma T. Pathway’s and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Res. 2005;39(12):2654–2664. doi: 10.1016/j.watres.2005.04.068
  • Beck AJ, Johnson DL, Jones KC. The form and bioavailability of non-ionic organic chemicals in sewage sludge-amended agricultural soils. Sci Total Environ. 1996;185(1–3):125–149. doi: 10.1016/0048-9697(96)05047-4
  • Edwards NT. Polycyclic aromatic hydrocarbons (PAH’s) in the terrestrial environment—a review. J Environ Qual. 1983;12(4):427–441. doi: 10.2134/jeq1983.00472425001200040001x
  • Margesin R, Schinner F. Manual for soil analysis-monitoring and assessing soil bioremediation. Vol. 5. Berlin, Germany: Springer Science & Business Media; 2005.
  • Jones DL, Kemmitt SJ, Wright D, et al. Rapid intrinsic rates of amino acid biodegradation in soils are unaffected by agricultural management strategy. Soil Biol Biochem. 2005;37(7):1267–1275. doi: 10.1016/j.soilbio.2004.11.023
  • Ding K, Wen X, Li Y, et al. Ammonia-oxidizing archaea versus bacteria in two soil aquifer treatment systems. Appl Microbiol Biotechnol. 2015;99(3):1337–1347. doi: 10.1007/s00253-014-6188-3
  • Hu M, Wang X, Wen X, et al. Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis. Bioresour Technol. 2012;117:72–79. doi: 10.1016/j.biortech.2012.04.061
  • Zhao X, Wang X, Chen Z, et al. Microbial community structure and pharmaceuticals and personal care products removal in a membrane bioreactor seeded with aerobic granular sludge. Appl Microbiol Biotechnol. 2015;99(1):425–433. doi: 10.1007/s00253-014-5984-0
  • Grenni P, Patrolecco L, Ademollo N, et al. Degradation of Gemfibrozil and Naproxen in a river water ecosystem. Microchem J. 2013;107:158–164. doi: 10.1016/j.microc.2012.06.008
  • Lawrence J, Swerhone G, Wassenaar L, et al. Effects of selected pharmaceuticals on riverine biofilm communities. Can J Microbiol. 2005;51(8):655–669. doi: 10.1139/w05-047
  • Ehrich S, Behrens D, Lebedeva E, et al. A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, nitrospira-moscoviensis sp-nov and its phylogenetic relationship. Arch Microbiol. 1995;164(1):16–23. doi: 10.1007/BF02568729
  • Ye L, Zhang T. Estimation of nitrifier abundances in a partial nitrification reactor treating ammonium-rich saline wastewater using DGGE, T-RFLP and mathematical modeling. Appl Microbiol Biotechnol. 2010;88(6):1403–1412. doi: 10.1007/s00253-010-2837-3
  • Zhang D, Luo J, Lee Z, et al. Characterization of bacterial communities in wetland mesocosms receiving pharmaceutical-enriched wastewater. Ecol Eng. 2016;90:215–224. doi: 10.1016/j.ecoleng.2015.12.043
  • Kim E, Jeon J, Kim Y, et al. Mineralization and transformation of monofluorophenols by Pseudonocardia benzenivorans. Appl Microbiol Biotechnol. 2010;87(4):1569–1577. doi: 10.1007/s00253-010-2647-7
  • Mayer R, Sofill-Mas S, Egle L, et al. Occurrence of human-associated Bacteroidetes genetic source tracking markers in raw and treated wastewater of municipal and domestic origin and comparison to standard and alternative indicators of faecal pollution. Water Res. 2016;90:265–276. doi: 10.1016/j.watres.2015.12.031
  • Ng K, Shi X, Ong S, et al. Pyrosequencing reveals microbial community profile in anaerobic bio-entrapped membrane reactor for pharmaceutical wastewater treatment. Bioresour Technol. 2016;200:1076–1079. doi: 10.1016/j.biortech.2015.10.100
  • Shi X, Ng K, Li X, et al. Investigation of intertidal wetland sediment as a novel inoculation source for anaerobic saline wastewater treatment. Environ Sci Technol. 2015;49(10):6231–6239. doi: 10.1021/acs.est.5b00546

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.