181
Views
2
CrossRef citations to date
0
Altmetric
Articles

Influence of luminosity, carbon source and concentration of salts in the physiology of Chlorella sorokiniana

& ORCID Icon
Pages 719-729 | Received 20 Feb 2018, Accepted 02 Aug 2018, Published online: 24 Aug 2018

References

  • Sipaúba-Tavares LH, Ibarra LCC, Fioresi TB. Ankistrodesmus gracilis (Reisch) Korsikov (Chlorophyta) laboratory cultured in CHU12 and macrophyte with NPK media. Bol Inst Pesca. 2009;35(1):111–118.
  • Spolaore P, Joannis-Cassan C, Duran E, et al. Commercial applications of microalgae. J Biosci Bioeng. 2006;101:87–96. doi: 10.1263/jbb.101.87
  • Gouveia L, Marques A, Sousa J, et al. Microalgae – source of natural bioactive molecules as functional ingredients. Food Sci Technol Bull: Funct Foods. 2010;7(2):21–37.
  • Ge S, Qiu S, Tremblay D, et al. Centrate wastewater treatment with chlorella vulgaris : simultaneous enhancement of nutrient removal, biomass and lipid production. Chem Eng J. 2018;342:310–320. doi: 10.1016/j.cej.2018.02.058
  • Gouveia L, Graça S, Sousa C, et al. Microalgae biomass production using wastewater: treatment and costs. Algal Res. 2016;16:167–176. doi: 10.1016/j.algal.2016.03.010
  • Passos F, Gutiérrez R, Brockmann D, et al. Microalgae production in wastewater treatment systems, anaerobic digestion and modelling using ADM1. Algal Res. 2015;10:55–63. doi: 10.1016/j.algal.2015.04.008
  • Salama E-S, Kurade MB, Abou-Shanab RAI, et al. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew Sustain Energ Rev. 2017;79(C):1189–1211. doi: 10.1016/j.rser.2017.05.091
  • Wehr J, Sheath R, Kociolek JP. Freshwater algae from North America: ecology and classification. San Diego: Academic Press; 2015.
  • Klok JA. Optimization of lipid production in microalgae. Wageningen: Wageningen University; 2010.
  • Brutemark A, Granéli E. Role of mixotrophy and light for growth and survival of the toxic haptophyte Prymnesium parvum. Harmful Algae. 2011;10(4):388–394. doi: 10.1016/j.hal.2011.01.005
  • Jeong HJ, Yoo YD, Kim JS, et al. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci J. 2010;45(2):65–91. doi: 10.1007/s12601-010-0007-2
  • Di Caprio F, Altimari P, Pagnanelli F. Effect of Ca2+ concentration on Scenedesmus sp. growth in heterotrophic and photoautotrophic cultivation. New Biotechnol. 2017;40(B):228–235.
  • Cerón Garcia MC, Sánchez Mirón A, Sevilla JMF, et al. Mixotrophic growth of the microalga phaeodactylum tricornutum Proc Biochem. 2005;40:297–305. doi: 10.1016/j.procbio.2004.01.016
  • Angelo EA, Andrade DS, Colozzi Filho A. Non-photoautotrophic cultivation of microalgae: an overview. Semina Ciên Biol Saúde. 2014;35(2):125–136. doi: 10.5433/1679-0367.2014v35n2p125
  • Bischoff HW, Bold HC. Phycological studies. Some soil algae from enchanted rock and related algal species. Texas: University of Texas Publications; 1963.
  • Vega BOA, Voltolina D. Determinación de peso seco y contenido orgânico e inorgánico. In: Vega BOA, Voltolina D, editor. Metodos y herramientas analiticas en la evaluacion de la biomassa microalgale. México: Centro de Investigaciones biológicas Del Noroeste (CIBNOR); 2007. p. 23–26.
  • Fonseca GG, de Carvalho NMB, Gombert AK. Growth of the yeast Kluyveromyces marxianus CBS 6556 on different sugar combinations as sole carbon and energy source. App Microbiol Biotechnol. 2013;97(11):5055–5067. doi: 10.1007/s00253-013-4748-6
  • Flora SJ, Pachauri V. Chelation in metal intoxication. Int J Environ Res Public Health. 2010;7:2745–2788. doi: 10.3390/ijerph7072745
  • Doran PM. Bioprocess engineering principles. London: Academic Press Limited; 2005. p. 333–340.
  • Bidigare RR, Heukelem LVE, Trees CC. Analysis of algal pigments by high performance liquid chromatography. In: Andersen RA, editor. Algal culturing techniques. Burlington: Elsevier Academic Press; 2005. p. 327–345.
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306. doi: 10.1016/j.biotechadv.2007.02.001
  • Andrade MR, Costa JAV. Culture of microalga Spirulina platensis in alternative sources of nutrients. Ciên Agrotecnol. 2008;32(5):1551–1556. doi: 10.1590/S1413-70542008000500029
  • Li YQ, Horsman M, Wang B, et al. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol. 2008;81(4):629–636. doi: 10.1007/s00253-008-1681-1
  • Bonini MDA, Bastos RG. Biomass production by Aphanothece microscopica and Chlorella vulgaris in heterotrophic growth from glucose. Semina: Ciên Biol Saúde. 2012;33(2):151–160.
  • Ferreira SP, Soares LS, Costa JAV. Review: microalgae: an alternative source to obtain essential fatty acids. Rev Ciên Agrár. 2013;36(3):275–287.
  • Lee YK. Algal nutrition: heterotrophic carbon nutrition. In: Richmond A, editor. Handbook of Microalgal culture: biotechnology and applied phycology. Oxford: Blackwell Science; 2004. p. 116–124.
  • Chojnacka K, Marquez-Rocha FJ. Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology(Faisalabad). 2004;3(1):21–34. doi: 10.3923/biotech.2004.21.34
  • Eriksen NT. The technology of microalgal culturing. Biotechnol Lett. 2008;30(9):1525–1536. doi: 10.1007/s10529-008-9740-3
  • Lourenço SO, Barbarino E, Lavín PL, et al. Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. Eur J Phycol. 2004;39:17–32. doi: 10.1080/0967026032000157156
  • Li C, Yu Y, Zhang D, et al. Combined effects of carbon, phosphorus and nitrogen on lipid accumulation of Chlorella vulgaris in mixotrophic culture. J Chem Technol Biotechnol. 2016;91:680–684. doi: 10.1002/jctb.4623
  • Altimari P, Di Caprio F, Toro L, et al. Hydrogen photo-production by mixotrophic cultivation of Chlamydomonas reinhardtii: interaction between organic carbon and nitrogen. Chem Eng Trans. 2014;38:199–204.
  • Pagnanelli F, Altimari P, Trabucco F, et al. Mixotrophic growth of Chlorella vulgaris and Nannochloropsis oculata: interaction between glucose and nitrate. J Chem Technol Biotechnol. 2014;89:652–661. doi: 10.1002/jctb.4179
  • García-González M, Moreno J, Manzano JC, et al. Production of Dunaliella salina biomass rich in 9-cis-β- carotene and lutein in a closed tubular photobioreactor. J Biotechnol. 2005;115(1):81–90. doi: 10.1016/j.jbiotec.2004.07.010
  • Dalay MC, Imamoglu E, Demirel Z. Agricultural fertilizers as economical alternative for cultivation of Haematococcus pluvialis. J Microbiol Biotechnol. 2007;17(3):393–397.
  • Lee YK. Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol. 2001;13(4):307–315. doi: 10.1023/A:1017560006941
  • Perez-Garcia O, Escalante FME, De-Bashan LE, et al. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 2011;45(1):11–36. doi: 10.1016/j.watres.2010.08.037
  • Amaro HM, Guedes AC, Malcata FX. Advances and perspectives in using microalgae to produce biodiesel. Appl Energ. 2011;88(10):3402–3410. doi: 10.1016/j.apenergy.2010.12.014
  • Yang C, Hua Q, Shimizu K. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J. 2000;6(2):87–102. doi: 10.1016/S1369-703X(00)00080-2
  • Brennam L, Owende P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energ Rev. 2010;14(2):557–577. doi: 10.1016/j.rser.2009.10.009
  • Adolf JE, Stoecker DK, Harding Jr LW. The balance of autotrophy and heterotrophy during mixotrophic growth of Karlodinium micrum (Dinophyceae). J Plankton Res. 2006;28(8):737–751. doi: 10.1093/plankt/fbl007
  • Andrade MR, Camerini FV, Costa JAV. Chemical carbon losses and growth kinetics in Spirulina cultures. Quím Nova. 2008;31(8):2031–2034. doi: 10.1590/S0100-40422008000800022
  • Green DW, Perry RH. Perry’s chemical engineers’ handbook. New York: McGraw-Hill; 2008.
  • Rosa GM, Moraes L, Cardias BB, et al. Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle. Bioresour Technol. 2015;192:321–327. doi: 10.1016/j.biortech.2015.05.020
  • Sudhir P-R, Pogoryelov D, Kovács L, et al. The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. J Biochem Mol Biol. 2005;38:481–485.
  • Kim G, Choi W, Lee C-H, et al. Enhancement of dissolved inorganic carbon and carbon fixation by green alga Scenedesmus sp. in the presence of alkanolamine CO2 absorbents. Biochem Eng J. 2013;78(15):18–23. doi: 10.1016/j.bej.2013.02.010
  • Ansilago M, Ottonelli F, Carvalho EM. Cultivo da microalga pseudokirchneriella subcapitata em escala de bancada utilizando meio contaminado com metais pesados. Eng Sanit Ambient. 2016;21(3):603–608. doi: 10.1590/S1413-41522016124295

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.