851
Views
7
CrossRef citations to date
0
Altmetric
Articles

Bisphenol A removal from water by biomass-based carbon: isotherms, kinetics and thermodynamics studies

, , , , &
Pages 971-980 | Received 27 Jun 2018, Accepted 20 Aug 2018, Published online: 03 Sep 2018

References

  • Vogel SA. The politics of plastics: the making and unmaking of bisphenol a “safety”. Am J Public Health. 2009;99(S3):S559–S566. doi: 10.2105/AJPH.2008.159228
  • Stasinakis AS, Kordoutis CI, Tsiouma VC, et al. Removal of selected endocrine disrupters in activated sludge systems: effect of sludge retention time on their sorption and biodegradation. Bioresour Technol. 2010;101(7):2090–2095. doi: 10.1016/j.biortech.2009.10.086
  • Duong CN, Ra JS, Cho J, et al. Estrogenic chemicals and estrogenicity in river waters of South Korea and seven Asian countries. Chemosphere. 2010;78(3):286–293. doi: 10.1016/j.chemosphere.2009.10.048
  • Liu G, Ma J, Li X, et al. Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments. J Haz Mat. 2009;164(2-3):1275–1280. doi: 10.1016/j.jhazmat.2008.09.038
  • Melcer H, Klecka G. Treatment of wastewaters containing bisphenol A: state of the science review. Water Environ Res. 2011;83(7):650–666. doi: 10.2175/106143010X12851009156925
  • Proposed Risk Management Approach for Phenol, 4,4'-(1-methylethylidene) bis (Bisphenol A), Chemical Abstract Service Registry Number (CAS RN) 80-05-7 [Internet]. Canada; Government of Canada; 2008 [cited 2017 Dec 11]. Available from: https://www.ec.gc.ca/ese-ees/6FA54372-A09E-45CD-8A5F-39EBDD55D13A/batch2_80-05-7_rm_en.pdf
  • Dong Y, Wu D, Chen X, et al. Adsorption of bisphenol A from water by surfactant-modified zeolite. J Colloid Interface Sci. 2010;348(2):585–590. doi: 10.1016/j.jcis.2010.04.074
  • Nie Y, Qiang Z, Zhang H, et al. Fate and seasonal variation of endocrine-disrupting chemicals in a sewage treatment plant with A/A/O process. Sep Purif Technol. 2012;84:9–15. doi: 10.1016/j.seppur.2011.01.030
  • Flint S, Markle T, Thompson S, et al. Bisphenol A exposure, effects, and policy: A wildlife perspective. J Environ Manage. 2012;104:19–34. doi: 10.1016/j.jenvman.2012.03.021
  • Risk Management Action Milestones for Bisphenol A [Internet]. Canada; Government of Canada; 2012 [cited 2017 Dec 11]. Available from: https://www.canada.ca/en/health-canada/services/chemical-substances/challenge/batch-2/bisphenol-a/risk-management-actionmilestones.html
  • Durhan EJ, Lambright CS, Makynen EA, et al. Identification of metabolites of trenbolone acetate in androgenic runoff from a beef feedlot. Environ Health Perspect. 2006;114:65–68. doi: 10.1289/ehp.8055
  • Fernandez MP, Ikonomou MG, Buchanan I. An assessment of estrogenic organic contaminants in Canadian wastewaters. Sci Total Environ. 2007;373(1):250–269. doi: 10.1016/j.scitotenv.2006.11.018
  • Snyder SA, Westerhoff P, Yoon Y, et al. Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environ Eng Sci. 2003;20(5):449–469. doi: 10.1089/109287503768335931
  • Ternes TA, Stumpf M, Mueller J, et al. Behavior and occurrence of estrogens in municipal sewage treatment plants - I. investigations in Germany, Canada and Brazil. Sci Total Environ. 1999;225(1-2):81–90. doi: 10.1016/S0048-9697(98)00334-9
  • Vethaak AD, Lahr J, Schrap SM, et al. An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. Chemosphere. 2005;59(4):511–524. doi: 10.1016/j.chemosphere.2004.12.053
  • Körner W, Bolz U, Süßmuth W, et al. Input/output balance of estrogenic active compounds in a major municipal sewage plant in Germany. Chemosphere. 2000;40(9-11):1131–1142. doi: 10.1016/S0045-6535(99)00362-8
  • Rudder J, Wiele T, Dhooge W, et al. Advanced water treatment with manganese oxide for the removal of 17α-ethynylestradiol (EE2). Water Res. 2004;38(1):184–192. doi: 10.1016/j.watres.2003.09.018
  • Yamamoto T, Yasuhara A, Shiraishi H, et al. Bisphenol A in hazardous waste landfill leachates. Chemosphere. 2001;42(4):415–418. doi: 10.1016/S0045-6535(00)00079-5
  • Kolpin DW, Furlong ET, Meyer MT, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance. Environ Sci Technol. 2002;36(6):1202–1211. doi: 10.1021/es011055j
  • Stackelberg PE, Furlong ET, Meyer MT, et al. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Sci Total Environ. 2004;329(1):99–113. doi: 10.1016/j.scitotenv.2004.03.015
  • Wetherill YB, Akingbemi BT, Kanno J, et al. In vitro molecular mechanisms of bisphenol A action. Reprod. Toxicol. 2007;24(2):178–198. doi: 10.1016/j.reprotox.2007.05.010
  • Mohapatra DP, Brar SK, Tyagi RD, et al. Physico-chemical pre-treatment and biotransformation of wastewater and wastewater sludge - fate of bisphenol A. Chemosphere. 2010;78(8):923–941. doi: 10.1016/j.chemosphere.2009.12.053
  • Asada T, Oikawa K, Kawata K, et al. Study of removal effect of bisphenol A and & ß-estradiol by porous carbon. J Health Sci. 2004;50(6):588–593. doi: 10.1248/jhs.50.588
  • Nakanishi A, Tamai M, Kawasaki N, et al. Adsorption characteristics of bisphenol A onto carbonaceous materials produced from wood chips as organic waste. J Colloid Interface Sci. 2002;252(2):393–396. doi: 10.1006/jcis.2002.8387
  • Tsai W-T, Lai C-W, Su T-Y. Adsorption of bisphenol-A from aqueous solution onto minerals and carbon adsorbents. J Haz Mat. 2006;134(1-3):169–175. doi: 10.1016/j.jhazmat.2005.10.055
  • Sudhakar P, Mall ID, Srivastava VC. Adsorptive removal of bisphenol-A by rice husk ash and granular activated carbon—A comparative study. Desalin Water Treat. 2016;57(26):12375–12384. doi: 10.1080/19443994.2015.1050700
  • Sui Q, Huang J, Liu Y, et al. Rapid removal of bisphenol A on highly ordered mesoporous carbon. J Environ Sci. 2011;23(2):177–182. doi: 10.1016/S1001-0742(10)60391-9
  • Thirunavukkarasu OS, Viraraghavan T, Subramanian KS. Arsenic removal from drinking water using granular ferric hydroxide. Water SA. 2003;29:161–170. doi: 10.4314/wsa.v29i2.4851
  • Kilpimaa S, Kuokkanen T, Lassi U. Characterization and utilization potential of wood ash from combustion process and carbon residue from gasification process. Biores. 2013;8(1):1011–1027. doi: 10.15376/biores.8.1.1011-1027
  • Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918;40:1361–1403. doi: 10.1021/ja02242a004
  • Freundlich HMF. Over the adsorption in solution. J Phys Chem. 1906;57:385–471.
  • Dubinin MM, Radushkevich LV. The equation of the characteristic curve of the activated charcoal. Proc Acad Sci USSR Phys Chem. 1947;55:331–337.
  • Temkin MJ, Pyzhev V. Recent modifications to Langmuir isotherms. Acta Physicochim URSS. 1940;12:217–222.
  • Redlich O, Peterson DL. A useful adsorption isotherm. J Phys Chem. 1959;63:1024–1024. doi: 10.1021/j150576a611
  • Toth J. State equations of the solid gas interface layer. Acta Chem Acad Hung. 1971;69:311–328.
  • Sips R. On the structure of a catalyst surface. J Chem Phys. 1948;16:490–495. doi: 10.1063/1.1746922
  • Karri RR, Sahu JN, Jayakumar NS. Optimal isotherm parameters for phenol adsorption from aqueous solutions onto coconut shell based activated carbon: error analysis of linear and non-linear methods. J Taiwan Inst Chem Eng. 2017;80:472–487. doi: 10.1016/j.jtice.2017.08.004
  • Miraboutalebi SM, Nikouzad SK, Peydayesh M, et al. Methylene blue adsorption via maize silk powder: kinetic, equilibrium, thermodynamic studies and residual error analysis. Proc Saf Env Protec. 2017;106:191–202. doi: 10.1016/j.psep.2017.01.010
  • Lagergren S. About the theory of so-called adsorption of soluble substances. K Sven Vetenskapsakad Handl. 1898;24:1–39.
  • Ho YS, McKay G. Pseudo-second-order model for sorption processes. Process Biochem. 1999;34(5):451–465. doi: 10.1016/S0032-9592(98)00112-5
  • Zeldowitsch J. Über den mechanismus der katalytischen oxydation von CO an MnO2 [About the mechanism of catalytic oxidation of CO over MnO2]. Acta Physicochim URSS. 1934;1:364–449.
  • Weber WJ J, Morris JC. Kinetics of adsorption of carbon from solution. J Sanit Eng Div Am Soc Civ Eng. 1963;89:31–60.
  • Rodríguez-Reinoso F. The role of carbon materials in heterogeneous catalysis. Carbon N Y. 1998;36:159–175. doi: 10.1016/S0008-6223(97)00173-5
  • Fu K, Yue Q, Gao B, et al. Physicochemical and adsorptive properties of activated carbons from Arundo donax Linn utilizing different iron salts as activating agents. J Taiwan Inst Chem Eng. 2014;45(6):3007–3015. doi: 10.1016/j.jtice.2014.08.026
  • Koduru JR, Lingamdinne LP, Singh J, et al. Effective removal of bisphenol A (BPA) from water using a goethite/activated carbon composite. Process Saf Environ Prot. 2016;103:87–96. doi: 10.1016/j.psep.2016.06.038
  • Park H, Koduru JR, Choo K, et al. Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter. J Haz Mat. 2015;286:315–324. doi: 10.1016/j.jhazmat.2014.11.012
  • Gong J, Wang B, Zeng G, et al. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Haz Mat. 2009;164(2):1517–1522. doi: 10.1016/j.jhazmat.2008.09.072
  • Bautista-Toledo I, Ferro-García MA, Rivera-Utrilla J, et al. Bisphenol A removal from water by activated carbon. effects of carbon characteristics and solution chemistry. Environ Sci Technol. 2005;39(16):6246–6250. doi: 10.1021/es0481169
  • Tang L, Zhihong X, Guangming Z, et al. Removal of bisphenol A by iron nanoparticle-doped magnetic ordered mesoporous carbon. RSC Adv. 2016;6:25724–25732. doi: 10.1039/C5RA27710H
  • Poerschmann J, Trommler U, Górecki T. Aromatic intermediate formation during oxidative degradation of Bisphenol A by homogeneous sub-stoichiometric Fenton reaction. Chemosphere. 2010;79(10):975–986. doi: 10.1016/j.chemosphere.2010.03.030
  • Potakis N, Frontistis Z, Antonopoulou M, et al. Oxidation of bisphenol A in water by heat-activated persulfate. J Environ Manag. 2017;195:125–132. doi: 10.1016/j.jenvman.2016.05.045
  • Tsai W-T, Lee M-K, Su T-Y, et al. Photodegradation of bisphenol-A in a batch TiO2 suspension reactor. J Haz Mat. 2009;168(1):269–275. doi: 10.1016/j.jhazmat.2009.02.034
  • Luo S, Yang S, Sun C, et al. Feasibility of a two-stage reduction/subsequent oxidation for treating Tetrabromobisphenol A in aqueous solutions. Water Res. 2011;45(4):1519–1528. doi: 10.1016/j.watres.2010.10.039
  • Hua Z, Ma W, Bai X, et al. Heterogeneous Fenton degradation of bisphenol A catalyzed by efficient adsorptive Fe3O4/GO nanocomposites. Environ Sci Pollut Res. 2014;21(12):7737–7745. doi: 10.1007/s11356-014-2728-8
  • Sabhi S, Kiwi J. Degradation of 2,4-dichlorophenol by immobilized iron catalysts. Water Res. 2001;35(8):1994–2002. doi: 10.1016/S0043-1354(00)00460-7
  • Bahnemann W, Muneer M, Haque MM. Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions. Catal Today. 2007;124(3-4):133–148. doi: 10.1016/j.cattod.2007.03.031
  • Daskalaki VM, Frontistis Z, Mantzavinos D, et al. Solar light-induced degradation of bisphenol-A with TiO2 immobilized on Ti. Catal Today. 2011;161(1):110–114. doi: 10.1016/j.cattod.2010.09.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.