294
Views
10
CrossRef citations to date
0
Altmetric
Articles

Detection of C60 in environmental water using dispersive liquid–liquid micro-extraction followed by high-performance liquid chromatography

, , , , , & show all
Pages 1015-1022 | Received 23 Apr 2018, Accepted 21 Aug 2018, Published online: 11 Sep 2018

References

  • Kroto HW, Heath JR, O’Brien SC, et al. C60: buckminsterfullerene. Nature. 1985;318:162–163. doi: 10.1038/318162a0
  • Montellano A, Da Ros T, Bianco A, et al. Fullerene C60 as a multifunctional system for drug and gene delivery. Nanoscale. 2011;3:4035–4041. doi: 10.1039/c1nr10783f
  • Goyal RN, Gupta VK, Sangal A, et al. Voltammetric determination of uric acid at a fullerene-C60-modified glassy carbon electrode. Electroanalysis. 2005;17:2217–2223. doi: 10.1002/elan.200503353
  • Benn TM, Westerhoff P, Herckes P. Detection of fullerenes (C60 and C70) in commercial cosmetics. Environ Pollut. 2011;159:1334–1342. doi: 10.1016/j.envpol.2011.01.018
  • Woodrow Wilson International Center for Scholars, Project on Emerging Technologies, 2007.
  • Zhou XH, Huang BC, Zhou T, et al. Aggregation behavior of engineered nanoparticles and their impact on activated sludge in wastewater treatment. Chemosphere. 2015;119:568–576. doi: 10.1016/j.chemosphere.2014.07.037
  • Zanker H, Schierz A. Engineered nanoparticles and their identification among natural nanoparticles. Annual Review of Analytical Chemistry. 2012;5:107–132. doi: 10.1146/annurev-anchem-062011-143130
  • Chandler D. Hydrophobicity: Two faces of water. Nature. 2002;417:491. doi: 10.1038/417491a
  • Choudhury N, Pettitt BM. Dynamics of water trapped between hydrophobic solutes. J Phys Chem B. 2005;109:6422–6429. doi: 10.1021/jp045439i
  • Choudhury N, Pettitt BM. On the mechanism of hydrophobic association of nanoscopic solutes. J Am Chem Soc. 2005;127:3556–3567. doi: 10.1021/ja0441817
  • Choudhury N, Pettitt BM. Enthalpy−entropy contributions to the potential of mean force of nanoscopic hydrophobic solutes. J Phys Chem B. 2006;110:8459–8463. doi: 10.1021/jp056909r
  • Walther JH, Jaffe RL, Kotsalis EM, et al. Hydrophobic hydration of C60 and carbon nanotubes in water. Carbon N Y. 2004;42:1185–1194. doi: 10.1016/j.carbon.2003.12.071
  • Choi JI, Snow SD, Kim JH, et al. Interaction of C-60 with water: first-principles modeling and environmental implications. Environ Sci Technol. 2015;49:1529–1536. doi: 10.1021/es504614u
  • Oberdörster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect. 2004;112:1058–1062. doi: 10.1289/ehp.7021
  • Sayes CM, Fortner JD, Guo W, et al. The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 2004;4:1881–1887. doi: 10.1021/nl0489586
  • Wiesner MR, Lowry GV, Alvarez P, et al. Assessing the risks of manufactured nanomaterials. Environ Sci Technol. 2006;40:4336–4345. doi: 10.1021/es062726m
  • Hao Y, Ma C, Zhang Z, et al. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Environ Pollut. 2018;232:123–136. doi: 10.1016/j.envpol.2017.09.024
  • LD Y, FJ D, SC M, et al. Bacterial cell association and antimicrobial activity of a C60 water suspension. Environ Toxicol Chem. 2005;24:2757–2762. doi: 10.1897/04-649R.1
  • Waissi-Leinonen GC, Nybom I, Pakarinen K, et al. Fullerenes(nC60) affect the growth and development of the sediment-dwelling invertebrate Chironomus riparius larvae. Environ Pollut. 2015;206:17–23. doi: 10.1016/j.envpol.2015.06.010
  • Alvarez PJJ, Vicki C, Jamie L, et al. Research priorities to advance eco-responsible nanotechnology. ACS Nano. 2009;3:1616–1619. doi: 10.1021/nn9006835
  • Cox D, Behal S, Disko M, et al. Characterization of C60 and C70 clusters. J Am Chem Soc. 1991;113:2940–2944. doi: 10.1021/ja00008a023
  • Pycke BF, Halden RU, Benn TM, et al. Strategies for quantifying C 60 fullerenes in environmental and biological samples and implications for studies in environmental health and ecotoxicology. TrAC Trends Anal Chem. 2011;30:44–57. doi: 10.1016/j.trac.2010.08.005
  • Santa T, Yoshioka D, Homma H, et al. High-performance liquid chromatography of fullerence (C60) in plasma using ultraviolet and mass spectrometric detection. Biol Pharm Bull. 1995;18:1171–1174. doi: 10.1248/bpb.18.1171
  • Xia X-R, Monteiro-Riviere NA, Riviere JE. Trace analysis of fullerenes in biological samples by simplified liquid–liquid extraction and high-performance liquid chromatography. J Chromatogr A. 2006;1129:216–222. doi: 10.1016/j.chroma.2006.07.030
  • Bouchard D, Ma X. Extraction and high-performance liquid chromatographic analysis of C-60, C-70, and 6,6-phenyl C-61-butyric acid methyl ester in synthetic and natural waters. J Chromatogr A. 2008;1203:153–159. doi: 10.1016/j.chroma.2008.07.068
  • Sanchis J, Oliveira LFS, de Leao FB, et al. Liquid chromatography-atmospheric pressure photoionization-orbitrap analysis of fullerene aggregates on surface soils and river sediments from Santa Catarina (Brazil). Sci Total Environ. 2015;505:172–179. doi: 10.1016/j.scitotenv.2014.10.006
  • Astefanei A, Nunez O, Galceran MT. Characterisation and determination of fullerenes: a critical review. Anal Chim Acta. 2015;882:1–21. doi: 10.1016/j.aca.2015.03.025
  • Xia XR, Monteiro-Riviere NA, Riviere JE. Trace analysis of fullerenes in biological samples by simplified liquid-liquid extraction and high-performance liquid chromatography. J Chromatogr A. 2006;1129:216–222. doi: 10.1016/j.chroma.2006.07.030
  • Wang XC, Shu B, Li S, et al. QuEChERS followed by dispersive liquid-liquid microextraction based on solidification of floating organic droplet method for organochlorine pesticides analysis in fish. Talanta. 2017;162:90–97. doi: 10.1016/j.talanta.2016.09.069
  • Li G, Wu D, Xie W, Sha Y, Lin H, Liu B. Analysis of amino acids in tobacco by derivatization and dispersive liquid-liquid microextraction based on solidification of floating organic droplet method. J Chromatogr A. 2013;1296:243–247. doi: 10.1016/j.chroma.2013.03.076
  • Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J Chromatogr A. 2006;1116:1–9. doi: 10.1016/j.chroma.2006.03.007
  • Wang H, Li G, Zhang Y, Chen H, Zhao Q, Song W, Xu Y, Jin H, Ding L. Determination of triazine herbicides in cereals using dynamic microwave-assisted extraction with solidification of floating organic drop followed by high-performance liquid chromatography. J Chromatogr A. 2012;1233:36–43. doi: 10.1016/j.chroma.2012.02.034
  • Zhou Y, Han L, Cheng J, et al. Dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet for simultaneous analysis of diethofencarb and pyrimethanil in apple pulp and peel. Anal Bioanal Chem. 2011;399:1901–1906. doi: 10.1007/s00216-010-4567-x
  • Viñas P, Campillo N, Andruch V. Recent achievements in solidified floating organic drop microextraction. TrAC, Trends Anal Chem. 2015;68:48–77. doi: 10.1016/j.trac.2015.02.005
  • Regueiro J, Llompart M, Garcia-Jares C, Garcia-Monteagudo JC, Cela R. Ultrasound-assisted emulsification-microextraction of emergent contaminants and pesticides in environmental waters. J Chromatogr A. 2008;1190:27–38. doi: 10.1016/j.chroma.2008.02.091
  • Chen Z, Westerhoff P, Herckes P. Quantification of C(60) fullerene concentrations in water. Environ Toxicol Chem. 2008;27:1852–1859. doi: 10.1897/07-560.1
  • Deguchi S, Alargova RG, Tsujii K. Stable dispersions of fullerenes, C-60 and C-70, in water. preparation and characterization. Langmuir. 2001;17:6013–6017. doi: 10.1021/la010651o
  • Fortner JD, Lyon DY, Sayes CM, et al. C-60 in water: nanocrystal formation and microbial response. Environ Sci Technol. 2005;39:4307–4316. doi: 10.1021/es048099n
  • Hou F, Deng T, Jiang XY. Dispersive liquid-liquid microextraction of phenolic compounds using solidified floating organic droplets, and their determination by HPLC. Microchim Acta. 2013;180:341–346. doi: 10.1007/s00604-012-0937-8
  • Carboni A, Emke E, Parsons JR, et al. An analytical method for determination of fullerenes and functionalized fullerenes in soils with high performance liquid chromatography and UV detection. Anal Chim Acta. 2014;807:159–165. doi: 10.1016/j.aca.2013.11.015
  • Perez RA, Albero B, Miguel E, et al. A rapid procedure for the determination of C60 and C70 fullerenes in soil and sediments by ultrasound-assisted extraction and HPLC-UV. Anal Sci. 2013;29:533–538. doi: 10.2116/analsci.29.533
  • Liu J-f, Chao J-b, Liu R, et al. Cloud point extraction as an advantageous preconcentration approach for analysis of trace silver nanoparticles in environmental waters. Anal Chem. 2009;81:6496–6502. doi: 10.1021/ac900918e
  • Zhou Q, Zhang X, Xiao J. Ultrasound-assisted ionic liquid dispersive liquid-phase micro-extraction: A novel approach for the sensitive determination of aromatic amines in water samples. J Chromatogr, A. 2009;1216:4361–4365. doi: 10.1016/j.chroma.2009.03.046
  • Fan YC, Chen ML, Shen-Tu C, Zhu Y. A ionic liquid for dispersive liquid-liquid microextraction of phenols. J Anal Chem. 2009;64:1017. doi: 10.1134/S1061934809100074
  • Wilson SR, Wu Y. Detection of methoxylated anions of fullerenes by electrospray ionization mass spectrometry. J Am Chem Soc. 1993;115:10334–10337. doi: 10.1021/ja00075a057
  • Wang C, Shang C, Westerhoff P. Quantification of fullerene aggregate nC(60) in wastewater by high-performance liquid chromatography with UV-vis spectroscopic and mass spectrometric detection. Chemosphere. 2010;80:334–339. doi: 10.1016/j.chemosphere.2010.03.052
  • Herrero P, Bauerlein PS, Emke E, et al. Size and concentration determination of (functionalised) fullerenes in surface and sewage water matrices using field flow fractionation coupled to an online accurate mass spectrometer: method development and validation. Anal Chim Acta. 2015;871:77–84. doi: 10.1016/j.aca.2015.02.042
  • van Wezel AP, Morinière V, Emke E, ter Laak T, Hogenboom AC. Quantifying summed fullerene nC60 and related transformation products in water using LC LTQ Orbitrap MS and application to environmental samples. Environ Int. 2011;37:1063–1067. doi: 10.1016/j.envint.2011.03.020
  • Kolkman A, Emke E, Bauerlein PS, et al. Analysis of (functionalized) fullerenes in water samples by liquid chromatography coupled to high-resolution mass spectrometry. Anal Chem. 2013;85:5867–5874. doi: 10.1021/ac400619g

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.