331
Views
8
CrossRef citations to date
0
Altmetric
Articles

Investigation on phenol degradation capability of Scenedesmus regularis: influence of process parameters

, &
Pages 1065-1073 | Received 17 Apr 2018, Accepted 02 Sep 2018, Published online: 19 Sep 2018

References

  • Al-Khalid T, El-Naas MH. Aerobic biodegradation of phenols: a comprehensive review. Crit Rev Env Sci Tec. 2012;42:1631–1690. doi: 10.1080/10643389.2011.569872
  • Das B, Mandal TK, Patra S. A comprehensive study on Chlorella pyrenoidosa for phenol degradation and its potential applicability as biodiesel feedstock and animal feed. Appl Biochem Biotechnol. 2015;176:1382–1401. doi: 10.1007/s12010-015-1652-9
  • Kumar A, Kumar S, Kumar S. Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochem Eng J. 2005;22:151–159. doi: 10.1016/j.bej.2004.09.006
  • Michałowicz J, Duda W. Phenols–sources and toxicity. Polish J of Environ Stud. 2007;16(3):347–362.
  • Edalatmanesh M, Mehrvar M, Dhib R. Optimization of phenol degradation in a combined photochemical–biological wastewater treatment system. Chem Eng Res Des. 2008;86:1243–1252. doi: 10.1016/j.cherd.2008.06.001
  • El-Naas MH, Al-Muhtaseb S, Makhlouf S. Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. J Hazard Mater. 2009;164:720–725. doi: 10.1016/j.jhazmat.2008.08.059
  • Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for phenol. Atlanta (GA): U.S. Department of Health and Human Services, Public Health Service; 2008.
  • Busca G, Berardinelli S, Resini C, et al. Technologies for the removal of phenol from fluid streams: a short review of recent developments. J Hazard Mater. 2008;160(2–3):265–288. doi: 10.1016/j.jhazmat.2008.03.045
  • Pinto G, Pollio A, Previtera L, et al. Biodegradation of phenols by microalgae. Biotechnol Lett. 2002;24:2047–2205. doi: 10.1023/A:1021367304315
  • Ra JS, Oh SY, Lee BC, et al. The effect of suspended particles coated by humic acid on the toxicity of pharmaceuticals, estrogens, and phenolic compounds. Environ Int. 2008;34:184–192. doi: 10.1016/j.envint.2007.08.001
  • Alver E, Metin AÜ. Chitosan based metal-chelated copolymer nanoparticles: laccase immobilization and phenol degradation studies. Int Biodeterior Biodegradation. 2017;125:235–242. doi: 10.1016/j.ibiod.2017.07.012
  • Chen KC, Wu JY, Liou DJ, et al. Decolorization of the textile dyes by newly isolated bacterial strains. J Biotechnol. 2003;101:57–68. doi: 10.1016/S0168-1656(02)00303-6
  • Nair CI, Jayachandran K, Shashidhar S. Biodegradation of phenol. Afr J Biotechnol. 2008;7:4951–4958.
  • Lika K, Papadakis IA. Modeling the biodegradation of phenolic compounds by microalgae. J Sea Res. 2009;62:135–146. doi: 10.1016/j.seares.2009.02.005
  • Navarro AE, Hernandez-Vega A, Masud ME, et al. Bioremoval of phenol from aqueous solutions using native Caribbean seaweed. Environments. 2017;4(1):1–14. doi: 10.3390/environments4010001
  • El-Sayed WS, Ibrahim MK, Abu-Shady M, et al. Isolation and characterization of phenol-catabolizing bacteria from a coking plant. Biosci Biotechnol Biochem. 2003;67:2026–2029. doi: 10.1271/bbb.67.2026
  • Shen X, Liu Z, Wang B. Isolation, identification of phenol degrading Rhadococcus sp. strain PNAN5 and characterization of its ringcleavage dioxygenases. Acta Scien Circum. 2004;24:482–486.
  • Shourian M, Noghabi KA, Zahiri HS, et al. Efficient phenol degradation by a newly characterized Pseudomonas sp. SA01 isolated from pharmaceutical wastewaters. Desalination. 2009;246:577–594. doi: 10.1016/j.desal.2008.07.015
  • Banerjee A, Ghoshal AK. Isolation and characterization of hyper phenol tolerant Bacillus sp. from oil refinery and exploration sites. J Hazard Mater. 2010;176:85–91. doi: 10.1016/j.jhazmat.2009.11.002
  • Bayramoglu G, Gursel I, Tunali Y, et al. Biosorption of phenol and 2-chlorophenol by Funalia trogii pellets. Bioresour Technol. 2009;100:2685–2691. doi: 10.1016/j.biortech.2008.12.042
  • Stoilova I, Krastanov A, Stanchev V, et al. Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells. Enzyme Microb Technol. 2006;39:1036–1041. doi: 10.1016/j.enzmictec.2006.02.006
  • Kelknar V, Kosarnic N. Degradation of phenols by algae. Environ Technol. 1992;13:493–501. doi: 10.1080/09593339209385176
  • Rubín E, Rodríguez P, Herrero R, et al. Biosorption of phenolic compounds by the brown alga Sargassum muticum. J Chem Technol Biotechnol. 2006;81:1093–1099. doi: 10.1002/jctb.1430
  • Hirooka T, Akıyama Y, Tsuji N, et al. Removal of hazardous phenols by microalgae under photoautotrophic conditions. J Biosci Bioeng. 2003;95(2):200–203. doi: 10.1016/S1389-1723(03)80130-5
  • Li R, Chen GZ, Fung N, et al. Toxicity of bisphenol A and its bioaccumulation and removal by a marine microalga Stephanodiscus hantzschii. Ecotox Environ Safe. 2009;72:321–328. doi: 10.1016/j.ecoenv.2008.05.012
  • Wang L, Xue C, Wang L, et al. Strain improvement of Chlorella sp. for phenol biodegradation by adaptive laboratory evolution. Bioresour Technol. 2016;205:264–268. doi: 10.1016/j.biortech.2016.01.022
  • Bischof HW, Bold HC. Phycological studies IV. Some soil algae from enchanted rock and related algal specie. University of Texas, Austin, 6318:1–95 (1963).
  • Andersen RA, editor. Algal culturing techniques. Amsterdam: Elsevier; 2005. p. 578.
  • Zimmer AK, Becker C, Kevin C, et al. Exploiting metal oxide nanoparticle selectivity in asphaltenes for identification of pyridyl-containing molecules. Energy Fuels. 2013;27:4574–4580. doi: 10.1021/ef400643v
  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–917. doi: 10.1139/o59-099
  • Wang S, Zhu J, Dai L, et al. A novel process on lipid extraction from microalgae for biodiesel production. Energy. 2016;115:963–968. doi: 10.1016/j.energy.2016.09.078
  • Chang JS, Chou C, Chen SY. Decolorization of azo dyes with immobilized Pseudomonas luteola. Process Biochem. 2001;36:757–763. doi: 10.1016/S0032-9592(00)00274-0
  • Daneshvar N, Ayazloo M, Khataee AR, et al. Biological decolorization of dye solution containing malachite green by microalgae Cosmarium sp. Bioresour Technol. 2007;98:1176–1182. doi: 10.1016/j.biortech.2006.05.025
  • Walker GM, Weatherley LR. Biodegradation and biosorption of acid anthraquinone dye. Environ Pollut. 2000;108:219–223. doi: 10.1016/S0269-7491(99)00187-6
  • Xiong JQ, Kurade MB, Abou-Shanab RAI, et al. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresour Technol. 2016;205:183–190. doi: 10.1016/j.biortech.2016.01.038
  • Priyadharshini SD, Bakthavatsalam AK. Optimization of phenol degradation by the microalga Chlorella pyrenoidosa using Plackett–Burman design and response surface methodology. Bioresour Technol. 2016;207:150–156. doi: 10.1016/j.biortech.2016.01.138
  • Lee HC, Lee M, Den W. Spirulina maxima for phenol removal: study on its tolerance, biodegradability and phenol-carbon assimilability. Water Air Soil Pollut. 2015;226:395–406. doi: 10.1007/s11270-015-2664-3
  • Aravindhan R, Rao JR, Nair BU. Application of a chemically modified green macro alga as a biosorbent for phenol removal. J Environ Manage. 2009;90:1877–1883. doi: 10.1016/j.jenvman.2008.12.005
  • Bera S, Roy AS, Mohanty K. Biodegradation of phenol by a native mixed bacterial culture isolated from crude oil contaminated site. Int Biodeterior Biodegradation. 2017;121:107–113. doi: 10.1016/j.ibiod.2017.04.002
  • Pawlowsky U, Howell JA. Mixed culture biooxidation of phenol. I. Determination of kinetic parameters. Biotechnol Bioeng. 1973;15:889–896. doi: 10.1002/bit.260150506
  • D’Adamo PD, Rozich AF, Gaudy JAF. Analysis of growth data with inhibitory carbon sources. Biotechnol Bioeng. 1984;26:397–402. doi: 10.1002/bit.260260421
  • Lallai A, Mura G, Miliddi R, et al. Effect of pH on growth of mixed cultures in batch reactor. Biotechnol Bioeng. 1988;31:130–134. doi: 10.1002/bit.260310206
  • Monteiro AAMG, Boaventura AR, Rodrigues AE. Phenol biodegradation by Pseudomonas putida DSM 548 in a batch reactor. Biochem Eng J. 2000;6:45–49. doi: 10.1016/S1369-703X(00)00072-3
  • Lin K, Luo LJ, Wang P, et al. Effects of metals on biosorption and biodegradation of mixed polycyclic aromatic hydrocarbons by a freshwater green alga Selenastrum capricornutum. Bioresour Technol. 2010;101:6950–6961. doi: 10.1016/j.biortech.2010.04.011
  • Levén L, Nyberg K, Schnürer A. Conversion of phenols during anaerobic digestion of organic solid waste–a review of important microorganisms and impact of temperature. J Environ Manage. 2012;95:99–103. doi: 10.1016/j.jenvman.2010.10.021
  • Wang Y, Chen H, Liu YX, et al. An adsorption-release-biodegradation system for simultaneous biodegradation of phenol and ammonium in phenol-rich wastewater. Bioresour Technol. 2016;211:711–719. doi: 10.1016/j.biortech.2016.03.149
  • Li Y, Li J, Wang C, et al. Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1. Bioresour Technol. 2010;101(17):6740–6744. doi: 10.1016/j.biortech.2010.03.083
  • Wang L, Li Y, Yu P, et al. Biodegradation of phenol at high concentration by a novel fungal strain Paecilomyces variotii JH6. J Hazard Mater. 2010;183(1–3):366–371. doi: 10.1016/j.jhazmat.2010.07.033
  • Kotturi G, Robinson CW, Inniss WE. Phenol degradation by a psychrotrophic strain of Pseudomonas putida. Appl Microbiol Biotechnol. 1991;34:539–543. doi: 10.1007/BF00180585
  • Semple KT, Cain RB. Biodegradation of phenols by the alga Ochromonas danica. Appl Environ Microbiol. 1996;62:1265–1273. doi: 10.1128/AEM.62.4.1265-1273.1996
  • Ellis LB, Roe D, Wackett LP. The university of Minnesota biocatalysis/biodegradation database: the first decade. Nucleic Acids Res. 2006;34:517–521. doi: 10.1093/nar/gkj076
  • Li R, Liu Y, Chen G, et al. Physiological responses of the alga Cyclotella caspia to bisphenol A exposure. Bot Marina. 2008;51:360–369. doi: 10.1515/BOT.2008.050
  • Ji MK, Kabra AN, Choi J, et al. Biodegradation of bisphenol A by the freshwater microalgae Chlamydomonas mexicana and Chlorella vulgaris. Ecol Eng. 2014;73:260–269. doi: 10.1016/j.ecoleng.2014.09.070
  • Das B, Mandal TK, Patra S. Biodegradation of phenol by a novel diatom BD1IITG-kinetics and biochemical studies. Int J Environ Sci Technol. 2016;13:529–542. doi: 10.1007/s13762-015-0857-3
  • Gracia MCC, Camacho GF, Miron AS, et al. Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J Microbiol Biotechnol. 2006;16:689–694.
  • Kong WB, Yang H, Cao YT, et al. Effect of glycerol and glucose on the enhancement of biomass. Lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture. Food Technol Biotechnol. 2013;51:62–69.
  • Droussi ZD, Rosaria V, Provenzano M, et al. Study of the biodegradation and transformation of olive-mill residues during composting using FTIR spectroscopy and differential scanning calorimetry. J Hazard Mater. 2009;164:1281–1285. doi: 10.1016/j.jhazmat.2008.09.081

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.