1,124
Views
76
CrossRef citations to date
0
Altmetric
Articles

A promising Ag2CrO4/LaFeO3 heterojunction photocatalyst applied to photo-Fenton degradation of RhB

, , &
Pages 1486-1503 | Received 15 Aug 2018, Accepted 13 Oct 2018, Published online: 04 Nov 2018

References

  • Zanella R, Avella E, Ramirez-Zamora RM, et al. Enhanced photocatalytic degradation of sulfamethoxazole by deposition of Au, Ag and Cu metallic nanoparticles on TiO2. Environ Technol. 2018;39:2353–2364. doi: 10.1080/09593330.2017.1354926
  • Alkaim AF, Alrobayi EM, Algubili AM, et al. Synthesis, characterization, and photocatalytic activity of sonochemical/hydration-dehydration prepared ZnO rod-like architecture nano/microstructures assisted by a biotemplate. Environ Technol. 2017;38:2119–2129. doi: 10.1080/09593330.2016.1246615
  • Xia YM, He ZM, Hu KJ, et al. Fabrication of n-SrTiO3/p-Cu2O heterojunction composites with enhanced photocatalytic performance. J Alloy Compd. 2018;753:356–363. doi: 10.1016/j.jallcom.2018.04.231
  • Zhao XX, Yang H, Li SH, et al. Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity. Mater Res Bull. 2018;107:180–188. doi: 10.1016/j.materresbull.2018.07.018
  • Li BS, Lai C, Zeng GM, et al. Facile hydrothermal synthesis of Z-scheme Bi2Fe4O9/Bi2WO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity. ACS Appl Mater Interfaces. 2018;10:18824–18836. doi: 10.1021/acsami.8b06128
  • Qin L, Zeng GM, Lai C, et al. A visual application of gold nanoparticles: simple, reliable and sensitive detection of kanamycin based on hydrogen-bonding recognition. Sensor Actuat B. 2017;243:946–954. doi: 10.1016/j.snb.2016.12.086
  • Brancher M, Franco D, Lisboa HD. Photocatalytic oxidation of H2S in the gas phase over TiO2-coated glass fiber filter. 2016;37:2852–2864.
  • Qin L, Zeng GM, Lai C, et al. ‘Gold rush’ in modern science: fabrication strategies and typical advanced applications of gold nanoparticles in sensing. Coordin Chem Rev. 2018;359:1–31. doi: 10.1016/j.ccr.2018.01.006
  • Huang HW, Xiao K, He Y, et al. In situ assembly of BiOI@Bi12O17Cl2 p-n junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI {001} active facets for robust and nonselective photocatalysis. Appl Catal B Environ. 2016;199:75–86. doi: 10.1016/j.apcatb.2016.06.020
  • Huang HW, Xiao K, Zhang TR, et al. Rational design on 3D hierarchical bismuth oxyiodides via in situ self-template phase transformation and phase-junction construction for optimizing photocatalysis against diverse contaminants. Appl Catal B Environ. 2017;203:879–888. doi: 10.1016/j.apcatb.2016.10.082
  • Huang HW, Han X, Li XW, et al. Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr−BiOI full-range composites based on microstructure modulation and band structures. ACS Appl Mater Interf. 2015;7:482–492. doi: 10.1021/am5065409
  • Huang HW, He Y, Du X, et al. A general and facile approach to heterostructured core/shell BiVO4/BiOI p–n junction: room-temperature in situ assembly and highly boosted visible-light photocatalysis. ACS Sustain Chem Eng. 2015;3:3262–3270. doi: 10.1021/acssuschemeng.5b01038
  • Huang HW, Tu SC, Du X, et al. Ferroelectric spontaneous polarization steering charge carriers migration for promoting photocatalysis and molecular oxygen activation. J Colloid Inter Sci. 2018;509:113–122. doi: 10.1016/j.jcis.2017.09.005
  • Saadon SA, Sathishkumar P, Yusoff ARM, et al. Photocatalytic activity and reusability of ZnO layer synthesised by electrolysis, hydrogen peroxide and heat treatment. Environ Technol. 2016;37:1875–1882. doi: 10.1080/09593330.2015.1135989
  • He ZM, Xia YM, Tang B, et al. Fabrication and photocatalytic property of ZnO/Cu2O core-shell nanocomposites. Mater Lett. 2016;184:148–151. doi: 10.1016/j.matlet.2016.08.020
  • Bicalho HA, Lopez JL, Binatti I, et al. Facile synthesis of highly dispersed Fe(II)-doped g-C3N4 and its application in Fenton-like catalysis. Mol Catal. 2017;435:156–165. doi: 10.1016/j.mcat.2017.04.003
  • Firak DS, Orth ES, Peralta-Zamora P. Unraveling the sigmoidal profiles in Fenton catalysis: toward mechanistic elucidation. J Catal. 2018;361:214–221. doi: 10.1016/j.jcat.2018.01.031
  • GilPavas E, Dobrosz-Gomez I, Gomez-Garcia MA. Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment. J Environ Manag. 2017;191:189–197. doi: 10.1016/j.jenvman.2017.01.015
  • Huang S, Xu Y, Zhou T, et al. Constructing magnetic catalysts with in-situ solid-liquid interfacial photo-Fenton-like reaction over Ag3PO4 @NiFe2O4 composites. Appl Catal B Environ. 2018;225:40–50. doi: 10.1016/j.apcatb.2017.11.045
  • Han CL, Huang GR, Zhu DJ, et al. Facile synthesis of MoS2/Fe3O4 nanocomposite with excellent Photo-Fenton-like catalytic performance. Mater Chem Phys. 2017;200:16–22. doi: 10.1016/j.matchemphys.2017.07.065
  • Wang HF, Xu YG, Jing LQ, et al. Novel magnetic BaFe12O19/g-C3N4 composites with enhanced thermocatalytic and photo-Fenton activity under visible-light. J Alloy Compd. 2017;710:510–518. doi: 10.1016/j.jallcom.2017.03.144
  • Chen HB, Liu WX, Qin ZZ. Zno/ZnFe2O4 nanocomposite as a broad spectrum photo-Fenton-like photocatalyst with near-infrared activity. Catal Sci Technol. 2017;7:2236–2244. doi: 10.1039/C7CY00308K
  • Hassan ME, Chen YB, Liu GL, et al. Heterogeneous photo-Fenton degradation of methyl orange by Fe2O3/TiO2 nanoparticles under visible light. Journal of Water Process Engineering. 2016;12:52–57. doi: 10.1016/j.jwpe.2016.05.014
  • Yan YX, Yang H, Zhao XX, et al. A hydrothermal route to the synthesis of CaTiO3 nanocuboids using P25 as the titanium source. J Electron Mater. 2018;47:3045–3050. doi: 10.1007/s11664-018-6183-z
  • Zeng S, Kar P, Thakur UK, et al. A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials. Nanotechnology. 2018;29:052001. doi: 10.1088/1361-6528/aa9fb1
  • Di LJ, Yang H, Xian T, et al. Enhanced photocatalytic degradation activity of BiFeO3 microspheres by decoration with g-C3N4 nanoparticles. Mater Res. 2018;21:e20180081. doi: 10.1590/1980-5373-mr-2018-0081
  • Gowreesan S, Kumar AR. Structural, magnetic, and electrical property of nanocrystalline perovskite structure of iron manganite (FeMnO3). Appl Phys A Mater. 2017;123:689. doi: 10.1007/s00339-017-1302-x
  • Mullerova J, Sutta P, Medlin R, et al. Optical properties of zinc titanate perovskite prepared by reactive RF sputtering. J Electr Eng Slovak. 2017;68:10–16.
  • Mohsenikia A, Gholami A, Masoum S, et al. Three-way spectrofluorimetric-assisted multivariate determination of nonylphenol ethoxylate and 2-naphtalene sulfonate in wastewater samples and optimization approach for their photocatalytic degradation by CoTiO3 nanostructure. Environ Technol. 2017;38:2263–2272. doi: 10.1080/09593330.2016.1256437
  • Li JL, Guan WS, Yan X, et al. Photocatalytic ozonation of 2,4-dichlorophenoxyacetic acid using LaFeO3 photocatalyst under visible light irradiation. Catal Lett. 2018;148:23–29. doi: 10.1007/s10562-017-2206-2
  • Acharya S, Parida K. A visible light-driven Zn/Cr-LaFeO3 nanocomposite with enhanced photocatalytic activity towards H-2 production and RhB degradation. ChemistrySelect. 2017;2:10239–10248. doi: 10.1002/slct.201701589
  • Shen HF, Xue T, Wang YM, et al. Photocatalytic property of perovskite LaFeO3 synthesized by sol-gel process and vacuum microwave calcination. Mater Res Bull. 2016;84:15–24. doi: 10.1016/j.materresbull.2016.07.024
  • Kumar RD, Jayavel R. Facile hydrothermal synthesis and characterization of LaFeO3 nanospheres for visible light photocatalytic applications. J Mater Sci Mater Electron. 2014;25:3953–3961. doi: 10.1007/s10854-014-2113-x
  • Thirumalairajan S, Girija K, Mastelaro VR, et al. Photocatalytic degradation of organic dyes under visible light irradiation by floral-like LaFeO3 nanostructures comprised of nanosheet petals. New J Chem. 2014;38:5480–5490. doi: 10.1039/C4NJ01029A
  • Ye YC, Yang H, Li RS, et al. Enhanced photocatalytic performance and mechanism of Ag-decorated LaFeO3 nanoparticles. J Sol-Gel Sci Technol. 2017;82:509–518. doi: 10.1007/s10971-017-4332-0
  • Wu Y, Wang H, Tu W, et al. Quasi-polymeric construction of stable perovskite-type LaFeO3/g-C3N4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid p-n heterojunction interfacial effect. J Hazard Mater. 2018;347:412–422. doi: 10.1016/j.jhazmat.2018.01.025
  • Jin L, Zhou XS, Ning XM, et al. Boosting visible light photocatalytic performance of g-C3N4 nanosheets by combining with LaFeO3 nanoparticles. Mater Res Bull. 2018;102:353–361. doi: 10.1016/j.materresbull.2018.02.057
  • Xiang SW, Zhang ZY, Gong C, et al. Lafeo3 nanoparticle-coupled TiO2 nanotube array composite with enhanced visible light photocatalytic activity. Mater Lett. 2018;216:1–4. doi: 10.1016/j.matlet.2017.12.101
  • Nakamura K, Mashiko H, Yoshimatsu K, et al. Impact of built-in potential across LaFeO3/SrTiO3 heterojunctions on photocatalytic activity. Appl Phys Lett. 2016;108:211605. doi: 10.1063/1.4952736
  • Kumar RD, Thangappan R, Jayavel R. Synthesis and characterization of LaFeO3/TiO2 nanocomposites for visible light photocatalytic activity. J Phys Chem Solids. 2017;101:25–33. doi: 10.1016/j.jpcs.2016.10.005
  • Wang K, Niu H, Chen J, et al. Immobilizing LaFeO3 nanoparticles on carbon spheres for enhanced heterogeneous photo-Fenton like performance. Appl Surf Sci. 2017;404:138–145. doi: 10.1016/j.apsusc.2017.01.223
  • Vaiano V, Iervolino G, Sannino D, et al. Food azo-dyes removal from water by heterogeneous photo-Fenton with LaFeO3 supported on honeycomb corundum monoliths. J Environ Eng. 2015;141:04015038. doi: 10.1061/(ASCE)EE.1943-7870.0000986
  • Ye YC, Yang H, Wang XX, et al. Photocatalytic, Fenton and photo-Fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts. Mater Sci Semicond Proc. 2018;82:14–24. doi: 10.1016/j.mssp.2018.03.033
  • Ouyang Q, Li ZH, Liu JW. Synthesis of beta-AgVO3 nanowires decorated with Ag2CrO4, with improved visible light photocatalytic performance. Semicond Sci Tech. 2018;33:055010. doi: 10.1088/1361-6641/aabc3e
  • Loncarevic D, Vukoje I, Dostanic J, et al. Antimicrobial and photocatalytic abilities of Ag2CO3 nano-rods. ChemistrySelect. 2017;2:2931–2938. doi: 10.1002/slct.201700003
  • Yang HR, Tian J, Li T, et al. Synthesis of novel Ag/Ag2O heterostructures with solar full spectrum (UV, visible and near-infrared) light-driven photocatalytic activity and enhanced photoelectrochemical performance. Catal Commun. 2016;87:82–85. doi: 10.1016/j.catcom.2016.09.013
  • Gao L, Li ZH, Liu JW. Facile synthesis of Ag3VO4/beta-AgVO3 nanowires with efficient visible-light photocatalytic activity. RSC Adv. 2017;7:27515–27521. doi: 10.1039/C7RA03955G
  • Zhang XC, Tang AD, Jia YR, et al. Enhanced visible-light-driven photocatalytic performance of Ag/AgGaO2 metal semiconductor heterostructures. J Alloy Compd. 2017;701:16–22. doi: 10.1016/j.jallcom.2017.01.085
  • Zheng CX, Yang H. Assembly of Ag3PO4 nanoparticles on rose flower-like Bi2WO6 hierarchical architectures for achieving high photocatalytic performance. J Mater Sci Mater Electron. 2018;29:9291–9300. doi: 10.1007/s10854-018-8959-6
  • Zhang JF, Yu WL, Liu JJ, et al. Illustration of high-active Ag2CrO4 photocatalyst from the first-principle calculation of electronic structures and carrier effective mass. Appl Surf Sci. 2015;358:457–462. doi: 10.1016/j.apsusc.2015.08.084
  • Xu DF, Cao SW, Zhang JF, et al. Effects of the preparation method on the structure and the visible-light photocatalytic activity of Ag2CrO4. Beilstein J Nanotech. 2014;5:658–666. doi: 10.3762/bjnano.5.77
  • Ouyang SX, Li ZS, Ouyang Z, et al. Correlation of crystal structures, electronic structures, and photocatalytic properties in a series of Ag-based oxides: AgAlO2, AgCrO2, and Ag2CrO4. J Phys Chem C. 2008;112:3134–3141. doi: 10.1021/jp077127w
  • Luo J, Zhou XS, Ma L, et al. Enhanced photodegradation activity of methyl orange over Ag2CrO4/SnS2 composites under visible light irradiation. Mater Res Bull. 2016;77:291–299. doi: 10.1016/j.materresbull.2016.02.005
  • Zheng CX, Yang H, Cui ZM, et al. A novel Bi4Ti3O12/Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance. Nanoscale Res Lett. 2017;12:608. doi: 10.1186/s11671-017-2377-1
  • Azami M, Haghighi M, Allahyari S. Sono-precipitation of Ag2CrO4-C composite enhanced by carbon-based materials (AC, GO, CNT and C3N4) and its activity in photocatalytic degradation of acid orange 7 in water. Ultrason Sonochem. 2018;40:505–516. doi: 10.1016/j.ultsonch.2017.07.043
  • Barzegar J, Habibi-Yangjeh A, Mousavi M. Combination of Ag2CrO4 and AgI semiconductors with g-C3N4: novel nanocomposites with substantially improved photocatalytic performance under visible light. Solid State Sci. 2018;77:62–73. doi: 10.1016/j.solidstatesciences.2018.01.009
  • Gong Y, Quan X, Yu HT, et al. Synthesis of Z-scheme Ag2CrO4/Ag/g-C3N4 composite with enhanced visible-light photocatalytic activity for 2,4-dichlorophenol degradation. Appl Catal B Environ. 2017;219:439–449. doi: 10.1016/j.apcatb.2017.07.076
  • Li W, Chen JF, Guo RT, et al. Facile fabrication of a direct Z-scheme MoO3/Ag2CrO4 composite photocatalyst with improved visible light photocatalytic performance. J Mater Sci Mater Electron. 2017;28:15967–15979. doi: 10.1007/s10854-017-7495-0
  • Zhu LF, Huang DQ, Ma HF, et al. Fabrication of AgBr/Ag2CrO4 composites for enhanced visible-light photocatalytic activity. Ceram Int. 2015;41:12509–12513. doi: 10.1016/j.ceramint.2015.05.118
  • Wang F, Yang H, Zhang HM, et al. Growth process and enhanced photocatalytic performance of CuBi2O4 hierarchical microcuboids decorated with AuAg alloy nanoparticles. J Mater Sci Mater Electron. 2018;29:1304–1316. doi: 10.1007/s10854-017-8036-6
  • Zhao X, Yang H, Cui Z, et al. Enhanced photocatalytic performance of Ag-Bi4Ti3O12 nanocomposites prepared by a photocatalytic reduction method. Mater Technol. 2017;32:870–880. doi: 10.1080/10667857.2017.1371914
  • Sing KSW, Williams RT. Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt Sci Technol. 2004;22:773–782. doi: 10.1260/0263617053499032
  • Li K, Wang D, Wu F, et al. Surface electronic states and photovoltage gas-sensitive characters of nanocrystalline LaFeO3. Mater Chem Phys. 2000;64:269–272. doi: 10.1016/S0254-0584(99)00265-5
  • Signorclli AJ, Hayes RG. X-ray photoelectron spectroscopy of various core levels of lanthanide ions: The roles of monopole excitation and electrostatic coupling. Phys Rev B. 1973;8:81–86. doi: 10.1103/PhysRevB.8.81
  • Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci. 2008;254:2441–2449. doi: 10.1016/j.apsusc.2007.09.063
  • Di LJ, Yang H, Xian T, et al. Enhanced photocatalytic activity of NaBH4 reduced BiFeO3 nanoparticles for rhodamine B decolorization. Materials (Basel). 2017;10:1118. doi: 10.3390/ma10101118
  • Soofivand F, Mohandes F, Salavati-Niasari M. Silver chromate and silver dichromate nanostructures: sonochemical synthesis, characterization, and photocatalytic properties. Mater Res Bull. 2013;48:2084–2094. doi: 10.1016/j.materresbull.2013.02.025
  • Yan YX, Yang H, Zhao XX, et al. Enhanced photocatalytic activity of surface disorder-engineered CaTiO3. Mater Res Bull. 2018;105:286–290. doi: 10.1016/j.materresbull.2018.05.008
  • Schindler M, Hawthorne FC, Freund MS, et al. XPS spectra of uranyl minerals and synthetic uranyl compounds. II: The O 1s spectrum. Geochim Cosmochim Ac. 2009;73:2488–2509. doi: 10.1016/j.gca.2008.10.041
  • Xia YM, He ZM, Yang W, et al. Effective charge separation in BiOI/Cu2O composites with enhanced photocatalytic activity. Mater Res Express. 2018;5:025504. doi: 10.1088/2053-1591/aaa9ee
  • Konstantinou IK, Albanis TA. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Appl Catal B Environ. 2004;49:1–14. doi: 10.1016/j.apcatb.2003.11.010
  • Cui ZM, Yang H, Zhao XX, et al. Enhanced photocatalytic performance of g-C3N4/Bi4Ti3O12 heterojunction. Mater Sci Eng B. 2018;229:160–172. doi: 10.1016/j.mseb.2017.12.037
  • Di LJ, Yang H, Xian T, et al. Facile synthesis and enhanced visible-light photocatalytic activity of novel p-Ag3PO4/n-BiFeO3 heterojunction composites for dye degradation. Nanoscale Res Lett. 2018;13:257.
  • Wang J, Jiang Z, Zhang ZH, et al. Sonocatalytic degradation of acid red B and rhodamine B catalyzed bynano-sized ZnO powder under ultrasonic irradiation. Ultrason Sonochem. 2008;15:768–774. doi: 10.1016/j.ultsonch.2008.02.002
  • Huang HW, Tu SC, Zeng C, et al. Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation. Angew Chem Int Ed. 2017;56:11860–11864. doi: 10.1002/anie.201706549
  • Huang HW, Li XW, Wang JJ, et al. Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32−-doped Bi2O2CO3. ACS Catal. 2015;5:4094–4103. doi: 10.1021/acscatal.5b00444
  • Huang HW, He Y, Li XW, et al. Bi2O2(OH)(NO3) as a desirable [Bi2O2]2+ layered photocatalyst: strong intrinsic polarity, rational band structure and {001} active facets co-beneficial for robust photooxidation capability. J Mater Chem A. 2015;3:24547–24556. doi: 10.1039/C5TA07655B
  • Huang HW, Reshak AH, Auluck S, et al. Visible-light-responsive Sillén-structured mixed-cationic CdBiO2Br nanosheets: layer structure design promoting charge separation and oxygen activation reactions. J Phys Chem C. 2018;122:2661–2672. doi: 10.1021/acs.jpcc.7b08661
  • Morrison SR. Electrochemistry at semiconductor and oxidized metal electrode. NewYork: Plenum; 1980.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.