163
Views
9
CrossRef citations to date
0
Altmetric
Articles

Unravelling the characteristics of a heteropolysaccharide–protein from an Haloarchaeal strain with flocculation effectiveness in heavy metals and dyes removal

, , , , , , & show all
Pages 2180-2195 | Received 25 Jun 2018, Accepted 03 Dec 2018, Published online: 12 Dec 2018

References

  • Papadopoulou ES, Tsachidou B, Sułowicz S, et al. Land spreading of wastewaters from the fruit-packaging industry and potential effects on soil microbes: effects of the antioxidant ethoxyquin and its metabolites on ammonia oxidizers. Appl Environ Microbiol. 2016;82:747–755. doi: 10.1128/AEM.03437-15
  • Khan S, Malik A. Environmental and health effects of textile industry wastewater. In: Malik A, Grohmann E, Akhtar R, editors. Environmental deterioration and human health. Dordrecht: Springer; 2014. p. 55–71.
  • Matamoros V, Salvadó V. Evaluation of a coagulation/flocculation-lamellar clarifier and filtration-UV-chlorination reactor for removing emerging contaminants at full-scale wastewater treatment plants in Spain. J Environ Manage. 2013;117:96102. doi: 10.1016/j.jenvman.2012.12.021
  • Radjenovic J, Petrovic M, Barceló D. Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Anal Bioanal Chem. 2007;387(4):1365–1377. doi: 10.1007/s00216-006-0883-6
  • Sahar E, David I, Gelman Y, et al. The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater. Desalination. 2011;273:142–147. doi: 10.1016/j.desal.2010.11.004
  • Quan X, Cheng Z, Chen B, et al. Electrochemical oxidation of recalcitrant organic compounds in biologically treated municipal solid waste leachate in a flow reactor. J Environ Sci. 2013;25:2023–2030. doi: 10.1016/S1001-0742(12)60253-8
  • Valeria OH, Reyes SA. Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge. Chemosphere. 2008:1588–1593.
  • Omirou M, Dalias P, Costa C, et al. Exploring the potential of biobeds for the depuration of pesticide-contaminate wastewaters from the citrus production chain: laboratory, column and field studies. Environ Pollut. 2012;166:31–39. doi: 10.1016/j.envpol.2012.03.001
  • Karas P, Metsoviti A, Zisis V, et al. Dissipation, metabolism and sorption of pesticides used in fruit-packaging plants: towards an optimized depuration of their pesticide-contaminated agro-industrial effluents. Sci Total Environ. 2015:530–531.
  • Roh H, Subramanya N, Zhao F, et al. Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria. Chemosphere. 2009;77:1084–1089. doi: 10.1016/j.chemosphere.2009.08.049
  • Santiago DE, Araña J, González-Díaz O, et al. Effect of inorganic ions on the photocatalytic treatment of agro-industrial wastewaters containing imazalil. Appl Catal B. 2014;156157:284–292. doi: 10.1016/j.apcatb.2014.03.022
  • Jimenez M, Maldonado MI, Rodriguez EM, et al. Supported TiO2 solar photocatalysis at semi-pilot scale: degradation of pesticides found in citrus processing industry wastewater, reactivity and influence of photogenerated species. J Chem Technol Biotechnol. 2015;90:149–157. doi: 10.1002/jctb.4299
  • Lee CS, John R, Mei F, et al. A review on application of flocculants in wastewater treatment. Proc Saf Environ Protec. 2014;92:489–508. doi: 10.1016/j.psep.2014.04.010
  • Li O, Lu C, Liu A, et al. Optimization and characterization of polysaccharide based bioflocculant produced by Paenibacillus elgii B69 and its application in wastewater treatment. Bioresour Technol. 2013;134:87–93. doi: 10.1016/j.biortech.2013.02.013
  • Simphiwe PB, Ademola OO, Balakrishna P. Textile dye removal from wastewater effluents using bioflocculants produced by Indigenous bacterial isolates. Molecules. 2012;17:14260–14274. doi: 10.3390/molecules171214260
  • Ugbenyen AM, Okoh AL. Characteristics of a bioflocculant produced by a consortium of Cobetia and Bacillus species and its application in the treatment of wastewaters. Water SA. 2014;40:139–144. doi: 10.4314/wsa.v40i1.17
  • Chen H, Zhong C, Berkhouse H, et al. Removal of cadmium by bioflocculant produced by Stenotrophomonas maltophilia using phenol-containing wastewater. Chemosphere. 2017;155:163–169. doi: 10.1016/j.chemosphere.2016.04.044
  • Xu H, Li J, Fu R, et al. Flocculation of coal washing wastewater using polysaccharide produced by Paenibacillus mucilaginosus WL412. Environ Sci Pollut Res Int. 2017;24:28132–28141. doi: 10.1007/s11356-017-0340-4
  • Ghosh M, Ganguli A, Pathak S. Application of a novel biopolymer for removal of Salmonella from poultry wastewater. Environ Technol. 2009;30:337–344. doi: 10.1080/09593330902732093
  • Zhang Z, Xia S, Wang X, et al. A novel biosorbent for dye removal: extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1. J Hazard Mater. 2009;163:279–284. doi: 10.1016/j.jhazmat.2008.06.096
  • Zhong CY, Chen HG, Cao G, et al. Bioflocculant production by Haloplanus vescus and its application in acid brilliant scarlet yellow/red removal. Water Sci Technol. 2016;73(4):707–715. doi: 10.2166/wst.2015.549
  • Chouchane H, Mahjoubi M, Ettoumi B, et al. A novel thermally stable heteropolysaccharide based bioflocculant from hydrocarbonoclastic strain Kocuria rosea BU22S and its application in dye removal. Environ Technol. 2017;39(7):859–872. doi: 10.1080/09593330.2017.1313886
  • Pathak M, Sarma HK, Bhattacharyya KG, et al. Characterization of a novel polymeric bioflocculant produced from bacterial utilization of n-hexadecane and its application in removal of heavy metals. Front Microbiol. 2017;8:170. doi: 10.3389/fmicb.2017.00170
  • Feng J, Yang Z, Zeng G, et al. The adsorption behavior and mechanism investigation of Pb(II) removal by flocculation using microbial flocculant GA1. Bioresour Technol. 2013;148:414–421. doi: 10.1016/j.biortech.2013.09.011
  • More TT, Yadav JS, Yan S, et al. Extracelluarpolymeric substances of bacteria and their potential environmental applications. J Environ Manage. 2014;144:1–25. doi: 10.1016/j.jenvman.2014.05.010
  • Wang T, Li J, Chang Z, et al. Characterization of flocculation by Halomonas sp. B01, International Conference on Civil, Structure, Environmental Engineering (I3CSEE 2016), 2016.
  • Sam S, Kucukasik F, Yenigun O, et al. Flocculating performances of exopolysaccharides produced by a halophilic bacterial strain cultivated on agro-industrial waste. Bioresour Technol. 2011;102:1788–1794. doi: 10.1016/j.biortech.2010.09.020
  • Cherif H, Neifar M, Chouchane H, et al. Extremophile diversity and biotechnological potential from desert environments and saline systems of southern Tunisia. In: Ravi V, Durvasula D, Subba Rao V, editors. Extremophiles: from biology to biotechnology. Boca Raton, FL: CRC Publishers; 2018. p. 33–64.
  • Stivaletta N, Barbieri R, Picard C, et al. Astrobiological significance of the sabkha life and environments of southern Tunisia. Planet Space Sci. 2009;57(5–6):597–605. doi: 10.1016/j.pss.2008.10.002
  • Kurane R, Hatamochi K, Kiyohara T, et al. Production of a bioflocculant by Rhodococcus erythropolis S-1 grown on alcohols. Biosci Biotechnol Biochem. 1994;58:428–429. doi: 10.1271/bbb.58.428
  • Cherif A, Borin S, Rizzi A, et al. Bacillus anthracis diverges from related clades of the Bacillus cereus group in 16S–23S ribosomal DNA intergenic transcribed spacers containing tRNA genes. Appl Environ Microbiol. 2003;69:33–40. doi: 10.1128/AEM.69.1.33-40.2003
  • Tsiamis G, Katsaveli K, Ntougias S, et al. Prokaryotic community profiles at different operational stages of a Greek solar saltern. Res Microbiol. 2008;159(9–10):609–627. doi: 10.1016/j.resmic.2008.09.007
  • Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2
  • Yoon S, Ha H, Kwon SM, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–1617. doi: 10.1099/ijsem.0.001755
  • Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–1874. doi: 10.1093/molbev/msw054
  • Mathieu D, Nony J, Phan-Tan-Luu R. NEMROD-W Software. Marseille: LPRAI; 2000.
  • Chaplin MF, Kennedy JF. Carbohydrate analysis. 2nd ed New York (NY): Oxford University Press; 1994.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3
  • Sun P, Hui C, Bai N, et al. Revealing the characteristics of a novel bioflocculant and its flocculation performance in Microcystis aeruginosa removal. Sci Rep. 2015;5:17465. doi: 10.1038/srep17465
  • Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973;54:484–489. doi: 10.1016/0003-2697(73)90377-1
  • Aljuboori AHR, Idris A, Al-Joubory HHR, et al. Flocculation behavior and mechanism of bioflocculant produced by Aspergillus flavus. J Environ Manage. 2015;150:466–471. doi: 10.1016/j.jenvman.2014.12.035
  • Guo J. Characteristics and mechanisms of Cu(II) sorption from aqueous solution by using bioflocculant MBFR10543. Appl Microbiol Biotechnol. 2015;99:229–240. doi: 10.1007/s00253-014-6103-y
  • Kiran B, Kaushik A, Kaushik CP. Response surface methodological approach for optimizing removal of Cr (VI) from aqueous solution using immobilized cyanobacterium. Chem Eng J. 2007;126:147–153. doi: 10.1016/j.cej.2006.09.002
  • Xu H, Sun LP, Shi YZ, et al. Optimization of cultivation conditions for extracellular polysaccharide and mycelium biomass by Morchella esculenta As51620. Biochem Eng J. 2008;39:66–73. doi: 10.1016/j.bej.2007.08.013
  • Deng S, Yu G, Ting YP. Production of a bioflocculant by Aspergillus parasiticus and its application in dye removal. Colloids Surf B Biointerfaces. 2005;44:179–186. doi: 10.1016/j.colsurfb.2005.06.011
  • Xia S, Zhang Z, Wang X, et al. Production and characterization of a bioflocculant by Proteus mirabilis TJ-1. Bioresour Technol. 2008;99:6520–6527. doi: 10.1016/j.biortech.2007.11.031
  • Aljuboori AHR, Idris A, Abdullah N, et al. Production and characterization of a bioflocculant produced by Aspergillus flavus. Bioresour Technol. 2013;127:489–493. doi: 10.1016/j.biortech.2012.09.016
  • Nwodo UU, Okoh AI. Characterization and flocculation properties of biopolymeric flocculant (glycosaminoglycan) produced by Cellulomonas sp. Okoh. J Appl Microbiol. 2013;114:1325–1337. doi: 10.1111/jam.12095
  • Zaki SA, Elkady MF, Farag S, et al. Characterization and flocculation properties of a carbohydrate bioflocculant from a newly isolated Bacillus velezensis 40B. J Environ Biol. 2013;34:51–58.
  • Mabinya LV, Cosa S, Nwodo U, et al. Studies on bioflocculant production by Arthrobacter sp. Raats, a freshwater bacteria isolated from Tyume river, South Africa. Int J Mol Sci. 2012;13:1054–1065. doi: 10.3390/ijms13011054
  • Elkady MF, Farag S, Zaki S, et al. Bacillus mojavensis strain 32A, a bioflocculant-producing bacterium isolated from an Egyptian salt production pond. Bioresour Technol. 2011;102:8143–8151. doi: 10.1016/j.biortech.2011.05.090
  • Zhao C, Zhang Y, Wei X, et al. Production of ultra-high molecular weight poly-γ-glutamic acid with Bacillus licheniformis P-104 and characterization of its flocculation properties. Appl Biochem Biotechnol. 2013;170:562–572. doi: 10.1007/s12010-013-0214-2
  • Liu W, Wang K, Li B, et al. Production and characterization of an intracellular bioflocculant by Chryseobacterium daeguense W6 cultured in low nutrition medium. Bioresour Technol. 2010;101:1044–1048. doi: 10.1016/j.biortech.2009.08.108
  • Wang L, Ma F, Lee DJ, et al. Bioflocculants from hydrolysates of corn stover using isolated strain Ochrobactium ciceri W2. Bioresour Technol. 2013;145:259–263. doi: 10.1016/j.biortech.2012.11.020
  • Sathiyanarayanan G, Seghal G, Selvin J. Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Colloids Surf B Biointerfaces. 2013;102:13–20. doi: 10.1016/j.colsurfb.2012.07.032
  • Razvi A, Scholtz J. Lessons in stability from thermophilic proteins. Protein Sci. 2006;15:1569–1578. doi: 10.1110/ps.062130306
  • Reed C-J, Lewis H, Trejo E, et al. Protein adaptations in archaeal extremophiles. Archaea. 2013;2013:373275. doi: 10.1155/2013/373275
  • Salehizadeh H, Shojaosadati SA. Extracellular biopolymeric flocculants: recent trends and biotechnological importance. Biotechnol Adv. 2001;19:371–385. doi: 10.1016/S0734-9750(01)00071-4
  • Li J, Yun YQ, Xing L, et al. Novel bioflocculant produced by salt-tolerant, alkaliphilic strain Oceanobacillus polygoni HG6 and its application in tannery wastewater treatment. Biosci Biotechnol Biochem. 2017;81(5):1018–1025. doi: 10.1080/09168451.2016.1274635
  • Guo JY, Yang CP, Zeng GM. Treatment of swine wastewater using chemically modified zeolite and bioflocculant from activated sludge. Bioresour Technol. 2013;143(1):289–297. doi: 10.1016/j.biortech.2013.06.003
  • Wu JY, Ye HF. Characterization and flocculating properties of an extracellular biopolymer produced from a Bacillus subtilis DYU1 isolate. Process Biochem. 2007;42:1114–1123. doi: 10.1016/j.procbio.2007.05.006
  • Salehizadeh H, Yan N. Recent advances in extracellular biopolymer flocculants. Biotechnol Adv. 2014;32(8):1506–1522. doi: 10.1016/j.biotechadv.2014.10.004
  • Yu L, Tang QW, Zhang YJ, et al. A novel Fe (III) dependent bioflocculant from Klebsiella oxytoca GS-4-08: culture conditions optimization and flocculation mechanism. Sci Rep. 2016;6:34980. doi: 10.1038/srep34980
  • Zhang J, Liu Z, Wang S, et al. Characterization of a bioflocculant produced by the marine Myxobacterium nannocystis sp. NU-2. Appl Microbiol Biotechnol. 2002;59:517–522. doi: 10.1007/s00253-002-1023-7
  • Salehizadeh H, Shojaosadati SA. Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res. 2003;37(17):4231–4235. doi: 10.1016/S0043-1354(03)00418-4
  • Martínez-Quiro M, López-Maldonado EA, Ochoa-Terán A, et al. Modification of chitosan with carbamoyl benzoic acids for testing its coagulant-flocculant and binding capacities in removal of metallic ions typically contained in plating wastewater. Chem Eng J. 2018;332:749–756. doi: 10.1016/j.cej.2017.09.042
  • López-Maldonadoa EA, Oropeza-Guzmana MT, Jurado-Baizavala JL, et al. Coagulation–flocculation mechanisms in wastewater treatment plants through zeta potential measurements. J Hazard Mater. 2014;279:1–10. doi: 10.1016/j.jhazmat.2014.06.025
  • López EA, Oropeza MT, Pina G, et al. Evaluation of the physicochemical behavior of waste water treatment polyelectrolytes with metal ions. J Environ Protect. 2013;4:270–279. doi: 10.4236/jep.2013.43032
  • Di Natale F, Lancia A, Molino A, et al. Removal of chromium ions form aqueous solutions by adsorption on activated carbon and char. J Hazard Mater. 2007;145:381–390. doi: 10.1016/j.jhazmat.2006.11.028
  • Somasundaran P, Runkana V. Investigation of the flocculation of colloidal suspensions by controlling adsorbed layer microstructure and population balance modelling. Chem Eng Res Des. 2005;83(7):905–914. doi: 10.1205/cherd.04345

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.