438
Views
10
CrossRef citations to date
0
Altmetric
Articles

Direct reduction of copper slag-carbon composite pellets by coal and biochar

ORCID Icon, , , , &
Pages 2240-2252 | Received 10 Aug 2018, Accepted 09 Dec 2018, Published online: 03 Jan 2019

References

  • Alp I, Deveci H, Sungun H. Utilization of flotation wastes of copper slag as raw material in cement production. J Hazard Mater. 2008;159:390–395. doi: 10.1016/j.jhazmat.2008.02.056
  • Gorai B, Jana RK, Premchand. Characteristics and utilisation of copper slag – a review. Resour Conserv Recycl. 2003;39:299–313. doi: 10.1016/S0921-3449(02)00171-4
  • Palacios J, Sánchez M. Wastes as resources: update on recovery of valuable metals from copper slags. Min Proc Ext Met Rev. 2011;120:218–223.
  • Yang ZH, Lin Q, Xia JX, et al. Preparation and crystallization of glass–ceramics derived from iron-rich copper slag. J Alloy Compd. 2013;574:354–360. doi: 10.1016/j.jallcom.2013.05.091
  • Liu HY, Lu HX, Chen DL, et al. Preparation and properties of glass–ceramics derived from blast-furnace slag by a ceramic-sintering process. Ceram Int. 2009;35:3181–3184. doi: 10.1016/j.ceramint.2009.05.001
  • Zhao DW, Zhang ZT, Tang XL, et al. Preparation of slag wool by integrated waste-heat recovery and resource recycling of molten blast furnace slags: from fundamental to industrial application. Energies. 2014;7:3121–3135. doi: 10.3390/en7053121
  • De Rojas MIS, Rivera J, Frias M, et al. Use of recycled copper slag for blended cements. J Chem Technol Biot. 2008;83:209–217. doi: 10.1002/jctb.1830
  • Shi CJ, Meyer C, Behnood A. Utilization of copper slag in cement and concrete. Resour Conserv Recycl. 2008;52:1115–1120. doi: 10.1016/j.resconrec.2008.06.008
  • Zhang JQ, Yuan H, Dl Y. Characteristics and mechanism of reduction and smelting-separation process of copper slag. J Iron Steel Res Int. 2015;22:121–127. doi: 10.1016/S1006-706X(15)60019-X
  • Heo JH, Kim BS, Park JH. Effect of CaO addition on iron recovery from copper smelting slags by solid carbon. Metal Mater Trans B. 2013;44:1352–1363. doi: 10.1007/s11663-013-9908-7
  • Zhang HW, Shi XY, Zhang B, et al. Reduction of molten copper slags with mixed CO-CH4-Ar gas. Metal Mater Trans B. 2013;45:582–589.
  • Siwiec G, Oleksiak B, Matula T. Reduction of copper slag with the use of carbon granulates. Metalurgija. 2014;53:585–587.
  • Zhang J, Qi YH, Yan DL. A new technology for copper slag reduction to get molten iron and copper matte. J Iron Steel Res Int. 2015;22:396–401. doi: 10.1016/S1006-706X(15)30018-2
  • Hu JH, Wang H, Li L. Recovery of iron from copper slag by melting reduction. International Conference on Computer, Electrical, and Systems Sciences, and Engineering; Kunming; 2011;541–544.
  • Heo JH, Chung Y, Park JH. Recovery of iron and removal of hazardous elements from waste copper slag via a novel aluminothermic smelting reduction (ASR) process. J Clean Prod. 2016;137:777–787. doi: 10.1016/j.jclepro.2016.07.154
  • Guo ZQ, Zhu DQ, Pan J, et al. Industrial tests to modify molten copper slag for improvement of copper recovery. JOM. 2017;70:533–538. doi: 10.1007/s11837-017-2671-5
  • Zhang LN, Zhang L, Yu WM. Oxidization mechanism in CaO-FeOx-SiO2 slag with high iron content. Trans Nonferrous Met Soc China. 2005;15:938–943.
  • Gyurov S, Rabadjieva D, Kovacheva D, et al. Kinetics of copper slag oxidation under nonisothermal conditions. J Therm Anal Calorim. 2014;116:945–953. doi: 10.1007/s10973-013-3569-2
  • Bruckard WJ, Somerville M, Hao F. The recovery of copper, by flotation, from calcium-ferrite-based slags made in continuous pilot plant smelting trials. Miner Eng. 2004;17:495–504. doi: 10.1016/j.mineng.2003.12.004
  • Warczok A, Riveros G. Slag cleaning in crossed electric and magnetic fields. Miner Eng. 2007;20:34–43. doi: 10.1016/j.mineng.2006.04.007
  • Zuo ZL, Yu QB, Xie HQ, et al. Thermodynamic analysis on molten slag waste heat cascade recovery method (MS-WHCR). J Therm Anal Calorim. 2018;134:2171–2181. doi: 10.1007/s10973-018-7421-6
  • Zuo ZL, Yu QB, Liu SH, et al. Thermodynamic analysis of thermal energy recovery and direct reduction (TER-DR) system for molten copper slag. J Therm Anal Calorim. 2018;131:1691–1698. doi: 10.1007/s10973-017-6701-x
  • Cheng XL, Zhao K, Qi YH, et al. Direct reduction experiment on iron-bearing waste slag. J Iron Steel Res Int. 2013;20:24–35. doi: 10.1016/S1006-706X(13)60064-3
  • Wang CL, Yang HF, Jiang BP, et al. Recovery of iron from lead slag with coal-based direct reduction followed by magnetic separation. Adv Mat Res. 2014;878:254–263.
  • Yang HF, Dang CG, Xu W. Preparation of geopolymer using the slag from direct reduction-magnetic separation of refractory iron ore (SDRMS). Adv Mat Res. 2011;383-390:911–915.
  • Sun Y, Zheng HY, Dong Y, et al. Melting and separation behavior of slag and metal phases in metallized pellets obtained from the direct-reduction process of vanadium-bearing titanomagnetite. Int J Miner Process. 2015;142:119–124. doi: 10.1016/j.minpro.2015.04.002
  • Jiang T, Wang S, Guo YF, et al. Effects of basicity and MgO in slag on the behaviors of smelting vanadium titanomagnetite in the direct reduction-electric furnace process. Metals-Basel. 2016;6:107. doi: 10.3390/met6050107
  • Qiu G, Liu Y, Jiang T, et al. Influence of additives on slag-iron separation during direct reduction of coal-base high-iron-content red mud. T Nonferr Metal Soc. 1996;6:205–211.
  • Yang HF, Jing LL, Zhang BG. Recovery of iron from vanadium tailings with coal-based direct reduction followed by magnetic separation. J Hazard Mater. 2011;185:1405–1411. doi: 10.1016/j.jhazmat.2010.10.062
  • Long HM, Meng QM, Wan P, et al. Preparation of chromium-iron metal powder from chromium slag by reduction roasting and magnetic separation. J Iron Steel Res Int. 2015;22:772–777. doi: 10.1016/S1006-706X(15)30070-4
  • Guo ZQ, Zhu DQ, Pan J, et al. Effect of Na2CO3 addition on carbothermic reduction of copper smelting slag to prepare crude Fe-Cu alloy. JOM. 2017;69:1688–1695. doi: 10.1007/s11837-017-2410-y
  • Yang HF, Jing LL, Dang CG. Iron recovery from copper-slag with lignite-based direct reduction followed by magnetic separation. Chin J Nonferrous Met. 2011;21:1165–1169.
  • Zhou XL, Zhu DQ, Pan J, et al. Utilization of waste copper slag to produce directly reduced iron for weathering resistant steel. ISIJ Int. 2015;55:1347–1352. doi: 10.2355/isijinternational.55.1347
  • Guo ZQ, Pan J, Zhu DQ, et al. Mechanism of composite additive in promoting reduction of copper slag to produce direct reduction iron for weathering resistant steel. Powder Technol. 2018;329:55–64. doi: 10.1016/j.powtec.2018.01.063
  • Guo ZQ, Zhu DQ, Pan J, et al. Innovative methodology for comprehensive and harmless utilization of waste copper slag via selective reduction-magnetic separation process. J Clean Prod. 2018;187:910–922. doi: 10.1016/j.jclepro.2018.03.264
  • Seo K, Fruehan R. Reduction of FeO in slag with coal char. ISIJ Int. 2000;40:7–15. doi: 10.2355/isijinternational.40.7
  • Utigard T, Sanchez G, Manriquez J, et al. Reduction kinetics of liquid iron oxide-containing slags by carbon monoxide. Metal Mater Trans B. 1997;28:821–826. doi: 10.1007/s11663-997-0009-3
  • Nagasaka T, Hino M, Ban-Ya S. Interfacial kinetics of hydrogen with liquid slag containing iron oxide. Geoffrey Belton Memorial Symposium. 2000;31:945–955.
  • Strezov V. Iron ore reduction using sawdust: experimental analysis and kinetic modelling. Renew Energ. 2006;31:1892–1905. doi: 10.1016/j.renene.2005.08.032
  • Luo SY, Yi CJ, Zhou YM. Direct reduction of mixed biomass-Fe2O3 briquettes using biomass-generated syngas. Renew Energ. 2011;36:3332–3336. doi: 10.1016/j.renene.2011.05.006
  • de Lima L C. A proposal of an alternative route for the reduction of iron ore in the eastern Amazonia. Int J Hydrogen Energ. 2004;29:659–661. doi: 10.1016/S0360-3199(03)00053-3
  • Abd RRZ, Mohd SH, Ani MH, et al. Reduction of low grade iron ore pellet using palm kernel shell. Renew Energ. 2014;63:617–623. doi: 10.1016/j.renene.2013.09.046
  • Guo DB, Zhu LD, Guo S, et al. Direct reduction of oxidized iron ore pellets using biomass syngas as the reducer. Fuel Process Technol. 2016;148:276–281. doi: 10.1016/j.fuproc.2016.03.009
  • Wen CS, Min ZC, Chun ZY. Experiment on iron scrap reduction by adding waste plastics into scrap column. J Mater Sci Technol. 2004;20:135–137.
  • Asanuma M, Kajioka M, Terada K, et al. Combustion and gasification behavior of pulverized waste plastics during injection into blast furnace. J Jpn Inst Energy. 2012;91:219–225. doi: 10.3775/jie.91.219
  • Zuo ZL, Yu QB, Wei MQ, et al. Thermogravimetric study of the reduction of copper slag by biomass. J Therm Anal Calorim. 2016;126:481–491. doi: 10.1007/s10973-016-5570-z
  • Bafghi M, Fukuda M, Ito Y, et al. Effect of CO gas formation on reduction rate of iron oxide in molten slag by graphite. J Korean Inst Met Ma. 1993;33:1125–1130.
  • Lee J, Kim K-H, Kwon EE. Biochar as a catalyst. Renew Sust Energ Rev. 2017;77:70–79. doi: 10.1016/j.rser.2017.04.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.