341
Views
5
CrossRef citations to date
0
Altmetric
Articles

Surface modification of fly ash by non-thermal air plasma for elemental mercury removal from coal-fired flue gas

, , , , , & show all
Pages 306-317 | Received 22 Sep 2018, Accepted 25 May 2019, Published online: 18 Jun 2019

References

  • Dranga BA, Lazar L, Koeser H. Oxidation catalysts for elemental mercury in flue gases—a review. Catalysts. 2012;2:139–170. doi: 10.3390/catal2010139
  • Wang SX, Zhang L, Wang L, et al. A review of atmospheric mercury emissions, pollution and control in China. Front Environ Sci Eng. 2014;8:631–649. doi: 10.1007/s11783-014-0673-x
  • Pirrone N, Cinnirella S, Feng X, et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys. 2010;10:5951–5964. doi: 10.5194/acp-10-5951-2010
  • Shao HZ, Liu XW, Zhou ZJ, et al. Elemental mercury removal using a novel KI modified bentonite supported by starch sorbent. Chem Eng J. 2016;291:306–316. doi: 10.1016/j.cej.2016.01.090
  • Pudasainee D, Kim JH, Seo YC. Mercury emission trend influenced by stringent air pollutants regulation for coal-fired power plants in Korea. Atmos Environ. 2009;43:6254–6259. doi: 10.1016/j.atmosenv.2009.06.007
  • Galbreath KC, Zygarlicke CJ. Mercury transformations in coal combustion flue gas. Fuel Process Technol. 2000;65:289–310. doi: 10.1016/S0378-3820(99)00102-2
  • Srivastava RK, Hutson N, Martin B, et al. Control of mercury emissions from coal-fired electric utility boilers. Environ Sci Technol. 2006;40:1385–1393. doi: 10.1021/es062639u
  • Wang YJ, Duan YF, Yang LG, et al. Mercury speciation and emission from the coal-fired power plant filled with flue gas desulfurization equipment. Can J Chem Eng. 2010;88:867–73.
  • Wilcox J, Rupp E, Ying SC, et al. Mercury adsorption and oxidation in coal combustion and gasification processes. Int J Coal Geol. 2012;90:4–20. doi: 10.1016/j.coal.2011.12.003
  • Wang SX, Zhang L, Li GH, et al. Mercury emission and speciation of coal-fired power plants in China. Atmos Chem Phys. 2010;10:1183–92. doi: 10.5194/acp-10-1183-2010
  • Wang SX, Zhang L, Wu Y, et al. Synergistic mercury removal by conventional pollutant control strategies for coal-fired power plants in China. J Air Waste Manage Assoc. 2010;60:722–730. doi: 10.3155/1047-3289.60.6.722
  • Hower JC, Senior CL, Suuberg EM, et al. Mercury capture by native fly ash carbons in coal-fired power plants. J Prog Energy Combust Sci. 2010;36:510–529. doi: 10.1016/j.pecs.2009.12.003
  • Xu H, Qu Z, Zong C, et al. MnOx/graphene for the catalytic oxidation and adsorption of elemental mercury. Environ Sci Technol. 2015;49:6823–6830. doi: 10.1021/es505978n
  • Yang J, Zhao Y, Ma S, et al. Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust. Environ Sci Technol. 2016;50:12040–12047. doi: 10.1021/acs.est.6b03743
  • Zhang B, Liu J, Yang Y, et al. Oxidation mechanism of elemental mercury by HCl over MnO2 catalyst: insights from first principles. Chem Eng J. 2015;280:354–362. doi: 10.1016/j.cej.2015.06.056
  • Zeng HC, Wang X, Li SL, et al. Experimental study on mercury removal from coal-fired flue gas by activated carbon fiber. J HUST Nat Sci Ed. 2006;34:1–4.
  • Sjostrom S, Durham M, Bustard CJ, et al. Activated carbon injection for mercury control: overview. Fuel. 2010;89:1320–1322. doi: 10.1016/j.fuel.2009.11.016
  • Hutson ND, Attwood BC, Scheckel KG. XAS and XPS characterization of mercury binding on brominated activated carbon. Environ Sci Technol. 2007;41:1747–1752. doi: 10.1021/es062121q
  • Liu H, Yang JP, Tian C, et al. Mercury removal from coal combustion flue gas by modified palygorskite adsorbents. Appl Clay Sci. 2017;147:36–43. doi: 10.1016/j.clay.2017.05.006
  • Zhang YS, Zhao LL, Guo RT, et al. Influence of NO on mercury adsorption characteristic for HBr modified fly ash. Int J Coal Geol. 2017;147:77–83. doi: 10.1016/j.coal.2016.10.002
  • He P, Zhang XB, Peng XL, et al. Effect of fly ash composition on the retention of mercury in coal-combustion flue gas. Fuel Process. Technol. 2016;142:6–12. doi: 10.1016/j.fuproc.2015.09.023
  • Zhang YS, Duan W, Liu Z, et al. Effects of modified fly ash on mercury adsorption ability in an entrained-flow reactor. Fuel. 2014;128:274–280. doi: 10.1016/j.fuel.2014.03.009
  • Xu WQ, Wang HR, Zhu TY, et al. Mercury removal from coal combustion flue gas by modified fly ash. J Environ Sci. 2013;25:393–398. doi: 10.1016/S1001-0742(12)60065-5
  • Zhao PF, Guo X, Zheng CG. Removal of elemental mercury by iodine-modified rice husk ash sorbents. J Environ Sci. 2010;22:1629–36. doi: 10.1016/S1001-0742(09)60299-0
  • Li WH, Song N, Zhang YS, et al. Mercury sorption properties of HBr-modified fly ash in a fixed bed reactor. J Therm Anal Calorim. 2016;124:387–393. doi: 10.1007/s10973-015-5108-9
  • Van Durme J, Dewulf J, Leys C, et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review. Appl Catal B Environ. 2008;78:324–333. doi: 10.1016/j.apcatb.2007.09.035
  • Jiang B, Zheng JT, Qiu S, et al. Review on electrical discharge plasma technology for wastewater remediation. Chem Eng J. 2014;236:348–368. doi: 10.1016/j.cej.2013.09.090
  • Niu Q, Luo JJ, Sun SQ, et al. Effects of flue gas components on the oxidation of gaseous Hg0 by dielectric barrier discharge plasma. Fuel. 2015;150:619–624. doi: 10.1016/j.fuel.2015.02.043
  • Wang ZH, Jiang SD, Zhu YQ, et al. Investigation on elemental mercury oxidation mechanism by non-thermal plasma treatment. Fuel Process Technol. 2010;91:1395–1400. doi: 10.1016/j.fuproc.2010.05.012
  • An JT, Shang KF, Lu N, et al. Performance evaluation of non-thermal plasma injection for elemental mercury oxidation in a simulated flue gas. J Hazard Mater. 2014;268:237–245. doi: 10.1016/j.jhazmat.2014.01.022
  • Ma SM, Zhao YC, Yang JP, et al. Research progress of pollutants removal from coal-fired flue gas using non-thermal plasma. Renew Sust Energ Rev. 2017;67:791–810. doi: 10.1016/j.rser.2016.09.066
  • Tang XL, Gao FY, Xiang Y, et al. Low temperature catalytic oxidation of nitric oxide over the Mn–CoOx catalyst modified by nonthermal plasma. Catal Commun. 2015;64:12–17. doi: 10.1016/j.catcom.2015.01.027
  • Liu RH, Xu WQ, Tong L, et al. Role of NO in Hg0 oxidation over a commercial selective catalytic reduction catalyst V2O5–WO3/TiO2. J Environ Sci. 2015;38:126–132. doi: 10.1016/j.jes.2015.04.023
  • Zhang B, Zeng XB, Xu P, et al. Using the novel method of nonthermal plasma to add Cl active sites on activated carbon for removal of mercury from flue gas. Environ Sci Technol. 2016;50:11837–11843. doi: 10.1021/acs.est.6b01919
  • Morent R, DeGeyter N, Verschuren J, et al. Non-thermal plasma treatment of textiles. Surf Coat Technol. 2008;202:3427–3449. doi: 10.1016/j.surfcoat.2007.12.027
  • Wu GQ, Zhang X, Hui H, et al. Adsorptive removal of aniline from aqueous solution by oxygen plasma irradiated bamboo based activated carbon. Chem Eng J. 2012;185:201–210. doi: 10.1016/j.cej.2012.01.084
  • Zhang W, Liu HY, Xia QB, et al. Enhancement of dibenzothiophene adsorption on activated carbons by surface modification using low temperature oxygen plasma. Chem Eng J. 2012;209:597–600. doi: 10.1016/j.cej.2012.08.050
  • Zhang B, Xu P, Qiu Y, et al. Increasing oxygen functional groups of activated carbon with non-thermal plasma to enhance mercury removal efficiency for flue gases. Chem Eng J. 2015;263:1–8. doi: 10.1016/j.cej.2014.10.090
  • Manchester S, Wang X, Kulaots I, et al. High capacity mercury adsorption on freshly ozone-treated carbon surfaces. Carbon. 2008;46:518–524. doi: 10.1016/j.carbon.2007.12.019
  • Hu P, Duan YF, Ding WK, et al. Enhancement of mercury removal efficiency by activated carbon treated with nonthermal plasma in different atmospheres. Energy Fuel. 2017;31:13852–13858. doi: 10.1021/acs.energyfuels.7b01973
  • Zhang J, Duan YF, Zhou Q, et al. Adsorptive removal of gas-phase mercury by oxygen non-thermal plasma modified activated carbon. Chem Eng J. 2016;294:281–289. doi: 10.1016/j.cej.2016.02.002
  • Xiao XB, Yang HR, Zhang H, et al. Research on carbon content in fly ash form circulating fluidized bed boilers. Energy Fuel. 2005;19:1520–1525. doi: 10.1021/ef049678g
  • Luo GQ, Yao H, Xu MH, et al. Identifying modes of occurrence of mercury in coal by temperature programmed pyrolysis. Proc Combust Inst. 2011;33:2763–2769. doi: 10.1016/j.proci.2010.06.108
  • Li GL, Shen BX, Li FK, et al. Elemental mercury removal using biochar pyrolyzed from municipal solid waste. Fuel Process Technol. 2015;133:43–50. doi: 10.1016/j.fuproc.2014.12.042
  • Kim HH. Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects. Plasma Process Polym. 2004;1:91–110. doi: 10.1002/ppap.200400028
  • Liao XY, Liu DH, Xiang QS, et al. Inactivation mechanisms of non-thermal plasma on microbes: a review. Food Control. 2017;75:83–91. doi: 10.1016/j.foodcont.2016.12.021
  • Park SJ, Kim BJ. Influence of oxygen plasma treatment on hydrogen chloride removal of activated carbon fibers. J Colloid Interface Sci. 2004;275:590–595. doi: 10.1016/j.jcis.2004.03.011
  • Puziy AM, Poddubnaya OI, Socha RP, et al. XPS and NMR studies of phosphoric acid activated carbons. Carbon. 2008;46:2113–2123. doi: 10.1016/j.carbon.2008.09.010
  • Granite EJ, And HW, Hargis RA. Novel sorbents for mercury removal from flue gas. Flue Gas. 1998;39:1020–1029.
  • Abad-Valle P, Lopez-Anton MA, Diaz-Somoano M, et al. The role of unburned carbon concentrates from fly ashes in the oxidation and retention of mercury. Chem Eng J. 2011;174:86–92. doi: 10.1016/j.cej.2011.08.053
  • His HC, Tsai CY, Lin KJ. Impact of surface functional groups, water vapor, and flue gas components on mercury adsorption and oxidation by sulfur-impregnated activated carbons. Energy Fuel. 2014;28:3300–3309. doi: 10.1021/ef500075d
  • Li YH, Lee CW, Gullett BK. Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption. Fuel. 2003;82:451–457. doi: 10.1016/S0016-2361(02)00307-1
  • Zhang YS, Duan W, Liu Z, et al. Effects of modified fly ash on mercury adsorption ability in an entrained-flow reactor. Fuel. 2014;128:274–280. doi: 10.1016/j.fuel.2014.03.009
  • Deng S, Shu Y, Li SG, et al. Chemical forms of the fluorine, chlorine, oxygen and carbon in coal fly ash and their correlations with mercury retention. J Hazard Mater. 2016;301:400–406. doi: 10.1016/j.jhazmat.2015.09.032
  • Zeng XB, Xu Y, Zhang B, et al. Elemental mercury adsorption and regeneration performance of sorbents FeMnOx enhanced via non-thermal plasma. Chem Eng J. 2017;309:503–512. doi: 10.1016/j.cej.2016.10.047
  • Swain BP. The analysis of carbon bonding environment in HWCVD deposited a-SiC:H films by XPS and Raman spectroscopy. Surf Coat Tech. 2006;201:1589–1593. doi: 10.1016/j.surfcoat.2006.02.029
  • Li GL, Shen BX, Li FK, et al. Elemental mercury removal using biochar pyrolyzed from municipal solid waste. Fuel Process Technol. 2015;133:43–50. doi: 10.1016/j.fuproc.2014.12.042
  • Sun P, Zhang B, Zeng XB, et al. Deep study on effects of activated carbon’s oxygen functional groups for elemental mercury adsorption using temperature programmed desorption method. Fuel. 2017;200:100–106. doi: 10.1016/j.fuel.2017.03.031
  • Lopez-Anton MA, Perry R, Abad-Valleb P, et al. Speciation of mercury in fly ashes by temperature programmed decomposition. Fuel Process Technol. 2011;92:707–711. doi: 10.1016/j.fuproc.2010.12.002
  • Liu J, Cheney M, Wu F, et al. Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces. J Hazard Mater. 2011;186:108–113. doi: 10.1016/j.jhazmat.2010.10.089

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.