295
Views
13
CrossRef citations to date
0
Altmetric
Articles

Comparison of the toxicity of waters containing initially sulfaquinoxaline after photocatalytic treatment by TiO2 and polyaniline/TiO2

, , , , , , & show all
Pages 419-428 | Received 05 Mar 2019, Accepted 05 Jun 2019, Published online: 24 Jun 2019

References

  • Dmitrienko SG, Kochuk EV, Apyari VV, et al. Recent advances in sample preparation techniques and methods of sulfonamides detection - A review. Anal Chim Acta. 2014;850:6–25.
  • Soleymanpour A, Rezvani SA. Development of a novel carbon paste sensor for determination of micromolar amounts of sulfaquinoxaline in pharmaceutical and biological samples. Mater. Sci. Eng. C. 2016;58:504–509.
  • Nassar R, Mokh S, Rifai A, et al. Transformation of sulfaquinoxaline by chlorine and UV light in water: kinetics and by-product identification. Environ. Sci. Pollut. Res. 2017;25(35):34863–34872.
  • Liao Q-N, Ji F, Li J-C, et al. Decomposition and mineralization of sulfaquinoxaline sodium during UV/H2O2 oxidation processes. Chem. Eng. J. 2016;284:494–502.
  • Mokh S, El M, Koubar M, et al. Innovative SPE-LC-MS / MS technique for the assessment of 63 pharmaceuticals and the detection of antibiotic-resistant-bacteria : A case study natural water sources in Lebanon. Sci. Total Environ. 2017;609:830–841.
  • Gao J, Pedersen JA. Adsorption of sulfonamide antimicrobial agents to clay minerals. Environ. Sci. Technol. 2005;39(24):9509–9516.
  • Urbano VR, Maniero MG, Pérez-Moya M, et al. Influence of pH and ozone dose on sulfaquinoxaline ozonation. J. Environ. Manage. 2017;195:224–231.
  • Qiu W, et al. Photolysis of enrofloxacin, pefloxacin and sulfaquinoxaline in aqueous solution by UV/H2O2, UV/Fe(II), and UV/H2O2/Fe(II) and the toxicity of the final reaction solutions on zebrafish embryos. Sci Total Environ 2019;651:1457–1468.
  • Blin J-L, Stébé M-J, Roques-Carmes T. Use of ordered mesoporous titania with semi-crystalline framework as photocatalyst. Colloids Surf. Physicochem. Eng. Asp. 2012;407:177–185.
  • Kassir M, et al. Adsorption and photocatalysis activity of TiO2/bentonite composites. Desalination Water Treat. 2017;98:196–215.
  • Klavarioti M, Mantzavinos D, Kassinos D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 2009;35(2):402–417.
  • Herrmann J-M. Heterogeneous photocatalysis: state of the art and present applications. Top Catal 2005;34(1):49–65.
  • Hoffmann MR, Martin ST, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem Rev 1995;95(1):69–96.
  • Wang C, et al. Efficient degradation of 4-nitrophenol by using functionalized porphyrin-TiO2 photocatalysts under visible irradiation. Appl. Catal. B Environ. 2007;76(3):218–226.
  • Ahmed MA, Abou-Gamra ZM, Medien HA, et al. Effect of porphyrin on photocatalytic activity of TiO2 nanoparticles toward Rhodamine B photodegradation. J Photochem Photobiol B. 2017;176:25–35.
  • Youssef Z, et al. Dye-sensitized nanoparticles for heterogeneous photocatalysis: Cases studies with TiO2, ZnO, fullerene and graphene for water purification. Dyes Pigm 2018;159:49–71.
  • Zhang H, Zong R, Zhu Y. Photocorrosion inhibition and photoactivity enhancement for zinc oxide via hybridization with monolayer polyaniline. The Journal of Physical Chemistry C. 2009;113(11):4605–4611.
  • Deivanayaki S, Ponnuswamy V, Ashokan S, et al. Synthesis and characterization of TiO2-doped polyaniline nanocomposites by chemical oxidation method. Mater. Sci. Semicond. Process. 2013;16(2):554–559.
  • Olad A, Behboudi S, Entezami AA. Preparation, characterization and photocatalytic activity of TiO2/polyaniline core-shell nanocomposite. Bull. Mater. Sci. 2012;35(5):801–809.
  • Radoičić M, Šaponjić Z, Janković IA, et al. Improvements to the photocatalytic efficiency of polyaniline modified TiO2 nanoparticles. Appl. Catal. B Environ. 2013;136–137:133–139.
  • Ibarra LE, et al. Assessment of polyaniline nanoparticles toxicity and teratogenicity in aquatic environment using Rhinella arenarum model. Ecotoxicol Environ Saf 2015;114:84–92.
  • Šojić Merkulov DV, et al. Photocatalytic decomposition of selected biologically active compounds in environmental waters using TiO2/polyaniline nanocomposites: Kinetics, toxicity and intermediates assessment. Environ. Pollut. 2018;239:457–465.
  • Urbano VR, Peres MS, Maniero MG, et al. Abatement and toxicity reduction of antimicrobials by UV/H2O2 process. J. Environ. Manage. 2017;193:439–447.
  • Baran W, Sochacka J, Wardas W. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions. Chemosphere. 2006;65(8):1295–1299.
  • Zhang L, Liu P, Su Z. Preparation of PANI-TiO2 nanocomposites and their solid-phase photocatalytic degradation. Polym Degrad Stab 2006;91(9):2213–2219.
  • Youssef Z, et al. Comparison of two procedures for the design of dye-sensitized nanoparticles targeting photocatalytic water purification under solar and visible light. J. Photochem. Photobiol. Chem. 2018;356:177–192.
  • Braiek Z, et al. Enhanced solar and visible light photocatalytic activity of In2S3-decorated ZnO nanowires for water purification. J. Photochem. Photobiol. Chem. 2019;368:307–316.
  • Doretto KM, Peruchi LM, Rath S. Sorption and desorption of sulfadimethoxine, sulfaquinoxaline and sulfamethazine antimicrobials in Brazilian soils. Sci. Total Environ. 2014;476–477:406–414.
  • Ritchie RJ. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 2006;89(1):27–41.
  • Ma Y, Ouyang T, Chen O-P, et al. Study on the degradation of the dye wastewater with polyaniline on titanium nanotubes. J Nanosci Nanotechnol 2014;14(4):2734–2740.
  • Wei J, Zhang Q, Liu Y, et al. Synthesis and photocatalytic activity of polyaniline-TiO2 composites with bionic nanopapilla structure. J. Nanoparticle Res. 2011;13(8):3157–3165.
  • M. R. Nabid, M. Golbabaee, A. B. Moghaddam, and R. Sedghi, “Polyaniline/TiO2 nanocomposite: Enzymatic synthesis and electrochemical properties.” Int. J. Electrochem. Sci. 2008;3:10.
  • De Medeiros DWO, Dos Santos DS, Dantas TNC, et al. Zeta potential and doping in polyaniline dispersions. Mater Sci. 2003;21(2):251–258.
  • Cabuk M. Colloidal behaviors of conducting polymer/chitosan composite particles. In Book: Advances in Colloid Science, Chapter. 2017;8:177–188.
  • Jumat NA, Wai PS, Ching JJ, et al. Synthesis of polyaniline-TiO2 nanocomposites and their application in photocatalytic degradation. Polym. Polym. Compos. 2017;25(7):507–514.
  • Ikehata K, Jodeiri Naghashkar N, Gamal El-Din M. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A review. Ozone Sci. Eng. 2006;28(6):353–414.
  • Bu Y, Chen Z. Role of polyaniline on the photocatalytic degradation and stability performance of the polyaniline/silver/silver phosphate composite under visible light. ACS Appl Mater Interfaces. 2014;6(20):17589–17598.
  • Renuka N, Sood A, Ratha SK, et al. Nutrient sequestration, biomass production by microalgae and phytoremediation of sewage water. Int J Phytoremediation. 2013;15(8):789–800.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.