238
Views
5
CrossRef citations to date
0
Altmetric
Articles

A novel CWPO/H2O2/VUV synergistic treatment for the degradation of unsymmetrical dimethylhydrazine in wastewater

ORCID Icon, , , , , , & show all
Pages 479-491 | Received 14 Dec 2018, Accepted 16 Jun 2019, Published online: 09 Jul 2019

References

  • Angaji MT, Ghiaee R. Decontamination of unsymmetrical dimethylhydrazine waste water by hydrodynamic cavitation-induced advanced Fenton process. Ulterson Sonochem. 2015;23:257–265. doi: 10.1016/j.ultsonch.2014.09.007
  • Pakdehi SG, Fazeli F. Hydrogenolysis of nitrosodimethyl amine in gas phase over Au/γ-Al2O3 nanocatalyst. Korean J Chem Eng. 2014;31:1174–1179. doi: 10.1007/s11814-014-0024-4
  • Keshavarz MH, Ramadan A. Reducing dangerous effects of unsymmetrical dimethylhydrazine as a liquid propellant by addition of hydroxyethylhydrazine – part I: physical properties. J Energ Mater. 2011;29:46–60. doi: 10.1080/07370652.2010.501326
  • Xue J, Zhou X, Zhang CX. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biol. 2014;15:521. doi: 10.1186/s13059-014-0521-0
  • Buryak AK, Serdyuk TM, Ul’yanov AV. Investigation of the reaction products of unsymmetrical dimethylhydrazine with potassium permanganate by gas chromatography-mass spectrometry. Theor Found Chem Eng. 2011;45:550. doi: 10.1134/S0040579510051057
  • An FP, Bai JZ, Balantekin AB. Observation of electron-antineutrino disappearance at Daya Bay. Phys Rev Lett. 2012;108:171803. doi: 10.1103/PhysRevLett.108.171803
  • Kosyakov DS, Ul'yanovskii NV, Kenessov B, et al. Effects of oxidant and catalyst on the transformation products of rocket fuel 1,1-dimethylhydrazine in water and soil. Chemosphere. 2019;228:335–344. doi: 10.1016/j.chemosphere.2019.04.141
  • Milyushkin AL, Birin KP, Matyushin DD, et al. Isomeric derivatives of triazoles as new toxic decomposition products of 1,1-dimethylhydrazine. Chemosphere. 2019;217:95–99. doi: 10.1016/j.chemosphere.2018.10.155
  • Makhotkina OA, Kuznetsova EV, Preis SV. Catalytic detoxification of 1, 1-dimethylhydrazine aqueous solutions in heterogeneous fenton system. Appl Catal B Environ. 2006;68:85–91. doi: 10.1016/j.apcatb.2006.07.008
  • Angaji MT, Ghiaee R. Cavitational decontamination of unsymmetrical dimethylhydrazine waste water. J TaiWan Inst Chem Eng. 2015a;49:142–147. doi: 10.1016/j.jtice.2014.11.008
  • Kim SK, Kim KH, Ihm SK. The characteristics of wet air oxidation of phenol over CuOx/Al2O3 catalysts: effect of copper loading. Chemosphere. 2007;68:287–292. doi: 10.1016/j.chemosphere.2006.12.080
  • Leavey-Roback SL, Sugar CA, Krasner SW, et al. NDMA formation during drinking water treatment: a multivariate analysis of factors influencing formation. Water Res. 2016;95:300–309. doi: 10.1016/j.watres.2016.02.060
  • Marti EJ, Pisarenko AN, Peller JR, et al. N-nitrosodimethylamine (NDMA) formation from the ozonation of model compounds. Water Res. 2015;72:262–270. doi: 10.1016/j.watres.2014.08.047
  • Mitch WA, Sharp JO, Trussell RR, et al. N-nitrosodimethylamine (NDMA) as a drinking water contaminant: a review. Environ Eng Sci. 2003;20:389–404. doi: 10.1089/109287503768335896
  • Liang M, Li W, Qi Q, et al. Catalyst for the degradation of 1, 1-dimethylhydrazine and its by-product N-nitrosodimethylamine in propellant wastewater. RSC Adv. 2016;6:5677–5687. doi: 10.1039/C5RA20481J
  • Ismagilov IZ, Michurin EM, Sukhova OB, et al. Oxidation of organic compounds in a microstructured catalytic reactor. Chem Eng J. 2008;135:S57–S65. doi: 10.1016/j.cej.2007.07.036
  • Pestunova OP, Elizarova GL, Ismagilov ZR, et al. Detoxication of water containing 1, 1-dimethylhydrazine by catalytic oxidation with dioxygen and hydrogen peroxide over Cu-and Fe-containing catalysts. Cata Today. 2012;75:219–225. doi: 10.1016/S0920-5861(02)00072-X
  • Ismagilov IZ, Kuznetsov VV, Nemudryi AP, et al. A comparative study of the activity of oxide catalysts in the oxidation of methane and 1, 1-dimethylhydrazine. Kinet Catal. 2004;45:722–729. doi: 10.1023/B:KICA.0000044985.63655.a1
  • Lv K, Yu J, Deng K, et al. Synergistic effects of hollow structure and surface fluorination on the photocatalytic activity of titania. J Hazard Mater. 2010;173:539–543. doi: 10.1016/j.jhazmat.2009.08.119
  • Yu J, Wang WG, Cheng B, et al. Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment. J Phys Chem. 2009;113:6743–6750.
  • Imoberdorf G, Mohseni M. Modeling and experimental evaluation of vacuum-UV photoreactors for water treatment. Chem Eng Sci. 2011;66:1159–1167. doi: 10.1016/j.ces.2010.12.020
  • Kutschera K, Börnick H, Worch E. Photoinitiated oxidation of geosmin and 2-methylisoborneol by irradiation with 254 and 185 nm UV light. Water Res. 2009;43:2224–2232. doi: 10.1016/j.watres.2009.02.015
  • Wang BB, Cao MH, Tan ZJ, et al. Photochemical decomposition of perfluorodecanoic acid in aqueous solution with VUV light irradiation. J Hazard Mater. 2010;181:187–192. doi: 10.1016/j.jhazmat.2010.04.115
  • Tasaki T, Wada T, Baba Y, et al. Degradation of surfactants by an integrated nanobubbles/VUV irradiation technique. Ind Eng Chem Res. 2009;48:4237–4244. doi: 10.1021/ie801279b
  • Huang HB, Leung DYC, Kwong PCW, et al. Enhanced photocatalytic degradation of methylene blue under vacuum ultraviolet irradiation. Catal Today. 2013;201:189–194. doi: 10.1016/j.cattod.2012.06.022
  • Rueda-Márquez JJ, Levchuk I, Salcedo I, et al. Post-treatment of refinery wastewater effluent using a combination of AOPs (H2O2 photolysis and catalytic wet peroxide oxidation) for possible water reuse. Comparison of low and medium pressure lamp performance. Water Res. 2016;91:86–96. doi: 10.1016/j.watres.2015.12.051
  • Yang F, Sun J, Gao H, et al. Unprecedented formation of spiro [indoline-3, 7′-pyrrolo [1,2-a] azepine] from multicomponent reaction of L-proline, isatin and but-2-ynedioate. RSC Adv. 2015;5:32786–32794. doi: 10.1039/C5RA04102C
  • Wang HM, Pu SX, Li JW, et al. Preparation and characterizations of monodisperse porous γ-Al2O3 nanoparticles. Mater Lett. 2014;124:296–298. doi: 10.1016/j.matlet.2014.03.080
  • Smolenkov AD, Rodin IA, Shpak AV, et al. 1-Formyl-2, 2-dimethylhydrazine as a new decomposition product of 1, 1-dimethylhydrazine. Int J Environ Anal Chem. 2007;87:351–359. doi: 10.1080/03067310601068882
  • Sacks MD, Tseng TY, Lee SY. Thermal decomposition of spherical hydrated basic aluminum sulfate. Am Ceram Soc Bull. 1984;63:301–309.
  • Ji XW, Tang SK, Gu L, et al. Synthesis of rod-like mesoporous γ-Al2O3 by an ionic liquid-assisted sol–gel method. Mater Lett. 2015;151:20–23. doi: 10.1016/j.matlet.2015.03.022
  • Jibril BY, Atta AY, Al-Waheibi YM, et al. Effect of copper loadings on product selectivities in microwave-enhanced degradation of phenol on alumina-supported copper oxides. J Ind Eng Chem. 2013;19:1800–1804. doi: 10.1016/j.jiec.2013.02.023
  • Wickersheim KA, Korpi GK. Interpretation of the infrared spectrum of boehmite. J Chem Phys. 1965;42:579–583. doi: 10.1063/1.1695976
  • Trunov MA, Schoenitz M, Zhu XY, et al. Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combust Flame. 2005;140:310–318. doi: 10.1016/j.combustflame.2004.10.010
  • He LJ, Wang LY, Chen WZ, et al. Effects of the magnesium oxide thin films’ microstructures on the residual stresses. J Alloy Compd. 2016;679:122–124. doi: 10.1016/j.jallcom.2016.04.011
  • Contreras JL, Gómez G, Zeifert B, et al. Synthesis of Pt/Al2O3 catalyst using mesoporous alumina prepared with a cationic surfactant. Catal Today. 2015;250:72–86. doi: 10.1016/j.cattod.2014.10.010
  • He F, Liu KY, Zhong JJ, et al. One dimensional nickel oxide-decorated cobalt oxide (Co3O4) composites for high-performance supercapacitors. J Electroanal Chem. 2015;749:89–95. doi: 10.1016/j.jelechem.2015.04.040
  • Richardson HW, Zhang J. Copper compounds. Ullmann's encyclopedia of industrial chemistry, 2005. doi:10.1002/14356007.a07_567.pub2.
  • Mao N, Jiang JX. Mgo/g-C3N4 nanocomposites as efficient water splitting photocatalysts under visible light irradiation. Appl Surf Sci. 2019;476:144–150. doi:10.1016/j.apsusc.2019.01.049.
  • Huang D, Liu H, Li T. Template-free synthesis of NiO skeleton crystal octahedron and effect of surface depression on electrochemical performance. J Sol-Gel Sci Techn. 2019: 1–10. doi:10.1007/s10971-018-4908-3.
  • Cong Y, Zhang JL, Chen F, et al. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J Environ Sci. 2007;111:6976–6982.
  • Huang HB, Huang HL, Zhang L, et al. Enhanced degradation of gaseous benzene under vacuum ultraviolet (VUV) irradiation over TiO2 modified by transition metals. Chem Eng J. 2015;259:534–541. doi: 10.1016/j.cej.2014.08.057
  • Thevenet F, Guaitella O, Puzenat E, et al. Oxidation of acetylene by photocatalysis coupled with dielectric barrier discharge. Cata Today. 2007;122:186–194. doi: 10.1016/j.cattod.2007.01.057
  • Lin L, Xu B, Lin YL, et al. Reduction of N-nitrosodimethylamine (NDMA) in aqueous solution by nanoscale Fe/Al2(SO4)3. Water Air Soil Pollut. 2013;224:1632. doi: 10.1007/s11270-013-1632-z
  • Selbes M, Kim D, Karanfil T. The effect of pre-oxidation on NDMA formation and the influence of pH. Water Res. 2014;66:169–179. doi: 10.1016/j.watres.2014.08.015
  • Fathima NN, Aravindhan R, Rao JR, et al. Dye house wastewater treatment through advanced oxidation process using Cu-exchanged Y zeolite: A heterogeneous catalytic approach. Chemosphere. 2008;70:1146–1151. doi: 10.1016/j.chemosphere.2007.07.033

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.