314
Views
9
CrossRef citations to date
0
Altmetric
Articles

Theoretical and experimental investigation of the mechanism of the catalytic ozonation process by using a manganese-based catalyst

ORCID Icon, &
Pages 632-639 | Received 28 Jan 2019, Accepted 30 Jun 2019, Published online: 17 Jul 2019

References

  • Geissen V, Mol H, Klumpp E, et al. Emerging pollutants in the environment: a challenge for water resource management. Int Soil Water Conserv Res. 2015;3:57–65. doi: 10.1016/j.iswcr.2015.03.002
  • Wang J, Bai Z. Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chem Eng J 2017;312:79–98. doi: 10.1016/j.cej.2016.11.118
  • Lin F, Wang Z, Ma Q, et al. Catalytic deep oxidation of NO by ozone over MnOx loaded spherical alumina catalyst. Appl Catal B. 2016;198:100–111. doi: 10.1016/j.apcatb.2016.05.058
  • Bethi B, Sonawane SH, Bhanvase BA, et al. Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chem Eng Process Process Intensif. 2016;109:178–189. doi: 10.1016/j.cep.2016.08.016
  • Kasprzyk-Hordern B, Ziółek M, Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl Catal B. 2003;46:639–669. doi: 10.1016/S0926-3373(03)00326-6
  • Liu ZQ, Han BJ, Wen G, et al. Full-scale application of catalytic ozonation for drinking water treatment: case study in China. J Environ Eng. 2014;140:1–8. doi: 10.1061/(ASCE)EE.1943-7870.0000795
  • Beltrán FJ, Rivas FJ, Montero-de-Espinosa R. Ozone-enhanced oxidation of oxalic acid in water with cobalt catalysts. 1. Homogeneous catalytic ozonation. Ind Eng Chem Res. 2003;42:3210–3217. doi: 10.1021/ie0209982
  • Einaga H, Ogata A. Benzene oxidation with ozone over supported manganese oxide catalysts: effect of catalyst support and reaction conditions. J Hazard Mater. 2009;164:1236–1241. doi: 10.1016/j.jhazmat.2008.09.032
  • Wang HC, Liang HS, Chang MB. Chlorobenzene oxidation using ozone over iron oxide and manganese oxide catalysts. J Hazard Mater. 2011;186:1781–1787. doi: 10.1016/j.jhazmat.2010.12.070
  • Reed C, Xi Y, Oyama ST. Acetone oxidation using ozone on manganese oxide catalysts. J Phys Chem B 2005;109:17587–17596. doi: 10.1021/jp052930g
  • Dimitrova S, Ivanov G, Mehandjiev D. Metallurgical slag as a support of catalysts for complete oxidation in the presence of ozone. Appl Catal A. 2004;266:81–87. doi: 10.1016/j.apcata.2004.01.029
  • Guo Y, Yang L, Wang X. The application and reaction mechanism of catalytic ozonation in water treatment. J Environ Anal Toxicol 2012;02: 1–6. doi: 10.4172/2161-0525.1000150
  • Wu T, Englehardt JD. Peroxone mineralization of chemical oxygen demand for direct potable water reuse: kinetics and process control. Water Res. 2015;73:362–372. doi: 10.1016/j.watres.2015.01.030
  • Fischbacher A, von Sonntag J, von Sonntag C, et al. The •OH radical yield in the H2O2+O3 (peroxone) reaction. Environ Sci Technol. 2013;47:9959–9964. doi: 10.1021/es402305r
  • Wang H, Bakheet B, Yuan S, et al. Kinetics and energy efficiency for the degradation of 1,4-dioxane by electro-peroxone process. J Hazard Mater. 2015;294:90–98. doi: 10.1016/j.jhazmat.2015.03.058
  • Ding Y, Wang J, Xu S, et al. Oxygen vacancy of CeO2 improved efficiency of H2O2/O3 for the degradation of acetic acid in acidic solutions. Sep Purif Technol 2018;207:92–98. doi: 10.1016/j.seppur.2018.06.027
  • Wang Y, Xie Y, Sun H, et al. Efficient catalytic ozonation over reduced graphene oxide for pHydroxylbenzoic acid (PHBA) destruction: active site and mechanism. ACS Appl Mater Interfaces. 2016;8:9710–9720. doi: 10.1021/acsami.6b01175
  • Buxton GV, Greenstock CL, Helman WP, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O−) in aqueous solution. J Phys Chem Ref Data. 1986; 17:513–883. doi: 10.1063/1.555805
  • Guzman-Perez CA, Soltan J, Robertson J. Kinetics of catalytic ozonation of atrazine in the presence of activated carbon. Sep Purif Technol. 2011;79:8–14. doi: 10.1016/j.seppur.2011.02.035
  • Atkotiya R, Patel D, Chokshi NP. Catalytic ozonation of reactive black 5 in aqueous solution over a La-Co-O. 3rd Int Conf Multidiscip Res Pract. 2017:2–6.
  • Sun W, Ding S-L, Zeng S-S, et al. Simultaneous absorption of NOx and SO2 from flue gas with pyrolusite slurry combined with gas-phase oxidation of NO using ozone. J Hazard Mater. 2011;192:124–130. doi: 10.1016/j.jhazmat.2010.11.044
  • Peluso MA, Gambaro LA, Pronsato E, et al., Synthesis and catalytic activity of manganese dioxide (type OMS-2) for the abatement of oxygenated VOCs. Catal Today 2008;133–135:487–492. doi: 10.1016/j.cattod.2007.12.132
  • Ma J, Graham NJD. Degradation of atrazine by manganese-catalysed ozonation: influence of humic substances. Water Res 1999; 33:785–793. doi: 10.1016/S0043-1354(98)00266-8
  • Li W, Gibbs G V, Oyama ST. Mechanism of ozone decomposition on a manganese oxide catalyst. 2. Steady-state and transient kinetic studies. J Am Chem Soc. 1998;120:9041–9046. doi: 10.1021/ja981441+
  • Dong Y, Yang H, He K, et al. β-MnO2 nanowires: a novel ozonation catalyst for water treatment. Appl Catal B. 2009;85:155–161. doi: 10.1016/j.apcatb.2008.07.007
  • Tong S, Liu W, Leng W, et al. Characteristics of MnO2 catalytic ozonation of sulfosalicylic acid and propionic acid in water. Chemosphere 2003;50:1359–1364. doi: 10.1016/S0045-6535(02)00761-0
  • Valdés H, Zaror CA. Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by activated carbon: kinetic approach. Chemosphere. 2006;65:1131–1136. doi: 10.1016/j.chemosphere.2006.04.027
  • Babbs CF, Griffin DW. Scatchard analysis of methane sulfinic acid production from dimethyl sulfoxide: a method to quantify hydroxyl radical formation in physiologic systems. Free Radic Biol Med. 1989;6:493–503. doi: 10.1016/0891-5849(89)90042-7
  • Langlais B, Reckhow DA, Brink DR. ozone in water treatment: applications and engineering. Boca Raton (FL): Lewis Publishers; 1999.
  • Pluangklang T, Wydallis JB, Cate DM, et al. A simple microfluidic electrochemical HPLC detector for quantifying Fenton reactivity from welding fumes. Anal Methods. 2014;6:8180–8186. doi: 10.1039/C4AY01534G
  • El-Sawy AM, King’ondu CK, Kuo C-H, et al. X-ray absorption spectroscopic study of a highly thermally stable manganese oxide octahedral molecular sieve (OMS-2) with high oxygen reduction reaction activity. Chem Mater. 2014;26:5752–5760. doi: 10.1021/cm5028783
  • Devlin HR, Harris IJ. Mechanism of the oxidation of aqueous phenol with dissolved oxygen. Nd Eng Chem Fund. 1984; 23:387–392. doi: 10.1021/i100016a002
  • Eaton AD, Clesceri LS, Rice EW, et al. Standard methods for the examination of water & wastewater. New York: American Public Health Association; 2005.
  • Li KY, Kuo CH, Weeks JJL. A kinetic study of ozone-phenol reaction in aqueous solutions. AIChE J 1979;25:583–591. doi: 10.1002/aic.690250403
  • Hoigné J, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water – II. Water Res 1983;17:185–194. doi: 10.1016/0043-1354(83)90099-4
  • Sotelo JL, Beltran FJ, Benitez FJ et al. Ozone decomposition in water: kinetic study. Ind Eng Chem Res 1987;26:39–43. doi: 10.1021/ie00061a008
  • Beltrán FJ. Ozone reaction kinetics for water and wastewater system. Boca Raton (FL): CRC Press; 2004.
  • Hoigné J, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water – I: non-dissociating organic compounds. Water Res. 1983;17:173–183. doi: 10.1016/0043-1354(83)90098-2
  • Hoigné J, Bader H, Haag WR, et al. Rate constants of reactions of ozone with organic and inorganic compounds in water-III. Inorganic compounds and radicals. Water Res 1985;19:993–1004. doi: 10.1016/0043-1354(85)90368-9
  • Sable SS, Shah KJ, Chiang P-C, et al. Catalytic oxidative degradation of phenol using iron oxide promoted sulfonated-ZrO2 by advanced oxidation Processes (AOPs). J Taiwan Inst Chem Eng 2018; 91: 434–440. doi: 10.1016/j.jtice.2018.06.030
  • Sun Q, Li L, Yan H, et al. Influence of the surface hydroxyl groups of MnOx/SBA-15 on heterogeneous catalytic ozonation of oxalic acid. Chem Eng J. 2014;242:348–356. doi: 10.1016/j.cej.2013.12.097
  • Wang Y, Yang W, Yin X, et al. Journal of environmental chemical engineering the role of Mn-doping for catalytic ozonation of phenol using Mn/γ-Al2O3 nanocatalyst: performance and mechanism. Biochem Pharmacol. 2016;4:3415–3125.
  • Andreozzi R, Caprio V, Insola A, et al. The ozonation of pyruvic acid in aqueous solutions catalyzed by suspended and dissolved manganese. Water Res. 1998;32:1492–1496. doi: 10.1016/S0043-1354(97)00367-9
  • Ren Y, Zhang H, An H, et al. Catalytic ozonation of di-n-butyl phthalate degradation using manganese ferrite/reduced graphene oxide nanofiber as catalyst in the water. J Colloid Interface Sci. 2018;526:347–355. doi: 10.1016/j.jcis.2018.04.073
  • Lu LW, Peng YP, Chang CN. Catalytic ozonation by palladium–manganese for the decomposition of natural organic matter. Sep Purif Technol. 2018;194:396–403. doi: 10.1016/j.seppur.2017.10.074
  • Andreozzi R, Insola A, Caprio V, et al. The use of manganese dioxide as a heterogeneous catalyst for oxalic acid ozonation in aqueous solution. Appl Catal A. 1996;138:75–81. doi: 10.1016/0926-860X(95)00247-2
  • Pryakhin AN, Ignat AN, Lunin V V. An equation for the rate of a first-order gas–liquid reaction. Russ J Phys Chem A. 2008;82:1093–1097. doi: 10.1134/S0036024408070078
  • Khuntia S, Kumar M, Saini B. An approach to minimize the ozone loss in a series reactor : a case of peroxone process. J Environ Chem Eng. 2018;6:6916–6922. doi: 10.1016/j.jece.2018.10.069

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.