644
Views
19
CrossRef citations to date
0
Altmetric
Articles

Pyrolysis of oil sludge from the offshore petroleum industry: influence of different mesoporous zeolites catalysts to obtain paraffinic products

ORCID Icon, & ORCID Icon
Pages 1013-1022 | Received 18 Mar 2019, Accepted 25 Jul 2019, Published online: 04 Aug 2019

References

  • Egazar’yants SV, Vinokurov VA, Vutolkina AV, et al. Oil sludge treatment processes. Chem Technol Fuels Oils. 2015;51(5):506–515. doi: 10.1007/s10553-015-0632-7
  • Hu G, Li J, Zeng G. Recent development in the treatment of oily sludge from petroleum industry: a review. J. Hazard. Mater. 2013;261:470–490. doi: 10.1016/j.jhazmat.2013.07.069
  • Cheng S, Wang Y, Gao N, et al. Pyrolysis of oil sludge with oil sludge ash additive employing a stirred tank reactor. J Anal Appl Pyrolysis. 2016;120:511–520. doi: 10.1016/j.jaap.2016.06.024
  • Yang P, Zhou P, Li Y, et al. Recent development in pyrolytic catalysts of oil sludge. Pet. Sci. Technol. 2018;36(7):520–524. doi: 10.1080/10916466.2018.1431661
  • Shen Y, Chen X, Wang J, et al. Oil sludge recycling by ash-catalyzed pyrolysis-reforming processes. Fuel. 2016;182:871–878. doi: 10.1016/j.fuel.2016.05.102
  • Miandad R, Barakat MAA, Aburiazaiza AS, et al. Effect of plastic waste types on pyrolysis liquid oil. Int. Biodeterior. Biodegrad. 2017;119:239–252. doi: 10.1016/j.ibiod.2016.09.017
  • Sadrameli SM. Thermal/catalytic cracking of hydrocarbons for the production of olefins: a state-of-the-art review I: thermal cracking review. Fuel. 2015;140:102–115. doi: 10.1016/j.fuel.2014.09.034
  • Kassargy C, Awad S, Burnens G, et al. Gasoline and diesel-like fuel production by continuous catalytic pyrolysis of waste polyethylene and polypropylene mixtures over USY zeolite. Fuel. 2018;224:764–773. doi: 10.1016/j.fuel.2018.03.113
  • Pánek P, Kostura B, Čepeláková I, et al. Pyrolysis of Oil sludge with calcium-containing additive. J Anal Appl Pyrolysis. 2014;108:274–283. doi: 10.1016/j.jaap.2014.04.005
  • Cheng S, Wang Y, Fumitake T, et al. Effect of steam and oil sludge ash additive on the products of oil sludge pyrolysis. Appl Energy. 2017;185:146–157. doi: 10.1016/j.apenergy.2016.10.055
  • Jia H, Zhao S, Zhou X, et al. Low-temperature pyrolysis of oily sludge: roles of Fe/Al-pillared bentonites. Arch. Environ. Prot. 2017;43(3):82–90. doi: 10.1515/aep-2017-0027
  • Silva DCC, Silva AAA, Melo CFF, et al. Production of oil with potential energetic use by catalytic co-pyrolysis of oil sludge from offshore petroleum industry. J Anal Appl Pyrolysis. 2017;124:290–297. doi: 10.1016/j.jaap.2017.01.021
  • Olazar M, Aguado R, Arabiourrutia M, et al. Catalyst effect on the composition of tire pyrolysis products. Energy Fuels. 2008;22(5):2909–2916. doi: 10.1021/ef8002153
  • Roy C, Chaala A, Darmstadt H. The vacuum pyrolysis of used tires. J Anal Appl Pyrolysis. 1999;51(1–2):201–221. doi: 10.1016/S0165-2370(99)00017-0
  • Almeida D, Marques M. Thermal and catalytic pyrolysis of plastic waste. Polímeros. 2016;26(1):44–51. doi: 10.1590/0104-1428.2100
  • Mihalcik DJ, Mullen CA, Boateng AA. Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. J Anal Appl Pyrolysis. 2011;92(1):224–232. doi: 10.1016/j.jaap.2011.06.001
  • Weckhuysen BM, Yu J. Recent advances in zeolite chemistry and catalysis. Chem. Soc. Rev. 2015;44(20):7022–7024. doi: 10.1039/C5CS90100F
  • Wang Y, Huang Q, Zhou Z, et al. Online study on the pyrolysis of polypropylene over the HZSM-5 zeolite with photoionization time-of-flight mass spectrometry. Energy Fuels. 2015;29(2):1090–1098. doi: 10.1021/ef502529w
  • Aguado J, Serrano DP, Sotelo JL, et al. Influence of the operating variables on the catalytic conversion of a polyolefin mixture over HMCM-41 and Nanosized HZSM-5. Ind. Eng. Chem. Res. 2001;40(24):5696–5704. doi: 10.1021/ie010420c
  • Pierella LB, Renzini S, Anunziata OA. Catalytic degradation of high density polyethylene over microporous and mesoporous materials. Microporous Mesoporous Mater. 2005;81(1–3):155–159. doi: 10.1016/j.micromeso.2004.11.015
  • Rehan M, Miandad R, Barakat MAA, et al. Effect of zeolite catalysts on pyrolysis liquid oil. Int. Biodeterior. Biodegrad. 2017;119:162–175. doi: 10.1016/j.ibiod.2016.11.015
  • Babitz SM, Williams BA, Miller JT, et al. Monomolecular cracking of N-hexane on Y, MOR, and ZSM-5 zeolites. Appl. Catal. A Gen. 1999;179(1–2):71–86. doi: 10.1016/S0926-860X(98)00301-9
  • Corma, A. State of the art and future challenges of zeolites as catalysts. J. Catal. 2003, 216 (1–2), 298–312. doi: 10.1016/S0021-9517(02)00132-X
  • Yu Y, Li X, Su L, et al. The role of shape selectivity in catalytic fast pyrolysis of lignin with zeolite catalysts. Appl. Catal. A Gen. 2012;447–448:115–123. doi: 10.1016/j.apcata.2012.09.012
  • Qin Z, Shen B, Yu Z, et al. A defect-based strategy for the preparation of mesoporous zeolite Y for high-performance catalytic cracking. J. Catal. 2013;298:102–111. doi: 10.1016/j.jcat.2012.11.023
  • Holm MS, Taarning E, Egeblad K, et al. Catalysis with Hierarchical zeolites. Catal Today. 2011;168(1):3–16. doi: 10.1016/j.cattod.2011.01.007
  • García-Martínez J, Li K, Krishnaiah G. A mesostructured Y zeolite as a superior FCC catalyst – from lab to refinery. Chem. Commun. 2012;48(97):11841. doi: 10.1039/c2cc35659g
  • Li K, Valla J, Garcia-Martinez J. Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking. ChemCatChem. 2014;6(1):46–66. doi: 10.1002/cctc.201300345
  • García RA, Serrano DP, Otero D. Catalytic cracking of HDPE over Hybrid zeolitic–mesoporous materials. J Anal Appl Pyrolysis. 2005;74(1–2):379–386. doi: 10.1016/j.jaap.2004.11.002
  • Faillace JG, de Melo CF, de Souza SPL, et al. Production of light hydrocarbons from pyrolysis of heavy gas oil and high density polyethylene using pillared clays as catalysts. J Anal Appl Pyrolysis. 2017;126:70–76. doi: 10.1016/j.jaap.2017.06.023
  • Fechete I, Wang Y, Védrine JC. The past, present and future of heterogeneous catalysis. Catal Today. 2012;189(1):2–27. doi: 10.1016/j.cattod.2012.04.003
  • Van Aelst J, Verboekend D, Philippaerts A, et al. Catalyst design by NH 4 OH treatment of USY zeolite. Adv. Funct. Mater. 2015;25(46):7130–7144. doi: 10.1002/adfm.201502772
  • Derouane EG, Védrine JC, Pinto RR, et al. The acidity of zeolites: Concepts, measurements and relation to catalysis: a review on experimental and theoretical methods for the study of zeolite acidity. Catal. Rev. 2013;55(4):454–515. doi: 10.1080/01614940.2013.822266
  • Gregg SJ, Sing KSW, Salzberg HW. Adsorption surface area and porosity. J. Electrochem. Soc. 1967;114(11):279C. doi: 10.1149/1.2426447
  • Tompsett GA, Krogh L, Griffin DW, et al. Hysteresis and scanning behavior of mesoporous molecular sieves. Langmuir. 2005;21(18):8214–8225. doi: 10.1021/la050068y
  • Thommes M, Kaneko K, Neimark AV, et al. Physisorption of Gases, with Special Reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015;87(9–10). doi: 10.1515/pac-2014-1117
  • Anovitz LM, Cole DR. Characterization and analysis of porosity and pore structures. Rev. Mineral. Geochemistry. 2015;80(1):61–164. doi: 10.2138/rmg.2015.80.04
  • Huo Z, Xu X, Lv Z, et al. Thermal study of NaP zeolite with different morphologies. J. Therm. Anal. Calorim. 2013;111(1):365–369. doi: 10.1007/s10973-012-2301-y
  • Taufiqurrahmi N, Mohamed AR, Bhatia S. Nanocrystalline zeolite Y: Synthesis and characterization. IOP Conf. Ser. Mater. Sci. Eng. 2011;17:012030. doi: 10.1088/1757-899X/17/1/012030
  • Joppert N, da Silva AA, da Costa Marques MôR. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology. Waste Manag. 2015. doi: 10.1016/j.wasman.2014.11.023
  • Muhammad C, Onwudili JA, Williams PT. Catalytic pyrolysis of waste plastic from electrical and electronic equipment. J Anal Appl Pyrolysis. 2015;113:332–339. doi: 10.1016/j.jaap.2015.02.016
  • Xue Y, Johnston P, Bai X. Effect of catalyst contact mode and gas atmosphere during catalytic pyrolysis of waste plastics. Energy Convers. Manag. 2017;142:441–451. doi: 10.1016/j.enconman.2017.03.071
  • Shen B, Wu C, Wang R, et al. Pyrolysis of scrap tyres with zeolite USY. J. Hazard. Mater. 2006;137(2):1065–1073. doi: 10.1016/j.jhazmat.2006.03.040
  • Qi L, Tang X, Wang Z, et al. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. Int. J. Min. Sci. Technol. 2017;27(2):371–377. doi: 10.1016/J.IJMST.2017.01.005
  • Aguado J, Serrano DP, Escola JM, et al. Catalytic cracking of polyethylene over zeolite mordenite with enhanced textural properties. J Anal Appl Pyrolysis. 2009;85(1–2):352–358. doi: 10.1016/j.jaap.2008.10.009
  • Akubo K, Nahil MA, Williams PT. Aromatic Fuel oils produced from the pyrolysis-catalysis of polyethylene plastic with metal-impregnated zeolite catalysts. J. Energy Inst. 2017. doi: 10.1016/J.JOEI.2017.10.009
  • Garforth A, Lin Y.-H, Sharratt P, et al. Production of hydrocarbons by catalytic degradation of high density polyethylene in a laboratory fluidised-bed reactor. Appl. Catal. A Gen. 1998;169(2):331–342. doi: 10.1016/S0926-860X(98)00022-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.