513
Views
9
CrossRef citations to date
0
Altmetric
Articles

Tuning the photoactivity of TiO2 nanoarchitectures doped with cerium or neodymium and application to colour removal from wastewaters

, ORCID Icon, , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 1038-1052 | Received 20 Mar 2019, Accepted 16 Jul 2019, Published online: 13 Aug 2019

References

  • Shirzad-Siboni M, Samarghandi M, Yang J-K, et al. Photocatalytic removal of reactive black-5 dye from aqueous solution by UV irradiation in aqueous TiO2: equilibrium and kinetics study. J Adv Oxid Technol. 2011;14:302–307.
  • Khlifi R, Belbahri L, Woodward S, et al. Decolourization and detoxification of textile industry wastewater by the laccase-mediator system. J Hazard Mater. 2010;175:802–808. doi: 10.1016/j.jhazmat.2009.10.079
  • Sun P, Liu L, Cui S, et al. Synthesis, characterization of Ce-doped TiO2 nanotubes with high visible light photocatalytic activity. Catal Lett. 2014;144:2107–2113. doi: 10.1007/s10562-014-1377-3
  • Cheng F, Sajedin SM, Kelly SM, et al. UV-stable paper coated with APTES-modified P25 TiO2 nanoparticles. Carbohyd Polym. 2014;114:246–252. doi: 10.1016/j.carbpol.2014.07.076
  • Xiao J, Xie Y, Cao H, et al. Disparate roles of doped metal ions in promoting surface oxidation of TiO2 photocatalysis. J Photoch Photobio A. 2016;315:59–66. doi: 10.1016/j.jphotochem.2015.09.013
  • Park J, Choi K, Lee J, et al. Fabrication and characterization of metal-doped TiO2 nanofibers for photocatalytic reactions. Mater Lett. 2013;97:64–66. doi: 10.1016/j.matlet.2013.01.047
  • Adyani SM, Ghorbani M. A comparative study of physicochemical and photocatalytic properties of visible light responsive Fe, Gd and P single and tri-doped TiO2 nanomaterials. J Rare Earth. 2017;In Press:1–15.
  • Lin L, Wang H, Luo H, et al. Enhanced photocatalysis using side-glowing optical fibers coated with Fe-doped TiO2 nanocomposite thin films. J Photoch Photobio A. 2015;307–308:88–98. doi: 10.1016/j.jphotochem.2015.04.010
  • Santos LM, Machado WA, França MD, et al. Structural characterization of Ag-doped TiO2 with enhanced photocatalytic activity. RSC Adv. 2015;5:103752–103759. doi: 10.1039/C5RA22647C
  • Hassan MS, Amna T, Yang O-B, et al. Tio2 fibers doped with rare earth elements and their photocatalytic activity. Ceram Int. 2012;38:5925–5930. doi: 10.1016/j.ceramint.2012.04.043
  • Reszczyńska J, Grzyb T, Wei Z, et al. Photocatalytic activity and luminescence properties of RE3+-TiO2 nanocrystals prepared by sol-gel and hydrothermal methods. Appl Catal B-Environ. 2016;181:825–837. doi: 10.1016/j.apcatb.2015.09.001
  • Haque N, Hughes A, Lim S, et al. Rare earth elements: overview of mining, mineralogy, uses, sustainability and environmental impact. Resour. 2014;3:614–635. doi: 10.3390/resources3040614
  • Matejová L, Kocí K, Reli M, et al. Preparation, characterization and photocatalytic properties of cerium doped TiO2: on the effect of Ce loading on the photocatalytic reduction of carbon dioxide. Appl Catal B-Environ. 2014;152–153:172–183. doi: 10.1016/j.apcatb.2014.01.015
  • Thomas J, Radhika S, Yoon M. Nd3+-doped TiO2 nanoparticles incorporated with heteropoly phosphotungstic acid: A novel solar photocatalyst for degradation of 4-chlorophenol in water. J Mol Catal A-Chem. 2016;411:146–156. doi: 10.1016/j.molcata.2015.10.021
  • Gao H, Qiao B, Wang T-J, et al. Cerium oxide coating of titanium dioxide pigment to decrease its photocatalytic activity. Ind Eng Chem Res. 2014;53:189–197. doi: 10.1021/ie402539n
  • Ono Y, Fujii H. Low-temperature synthesis of cerium oxide nanorods and their suppressive effect on photocatalysis of titanium dioxide. Ceram Int. 2015;41:15231–15234. doi: 10.1016/j.ceramint.2015.07.019
  • Bokare A, Pai M, Athawale AA. Surface modified Nd doped TiO2 nanoparticles as photocatalysts in UV and solar light irradiation. Sol Energy. 2013;91:111–119. doi: 10.1016/j.solener.2013.02.005
  • Beegam MS, Narendranath SB, Periyat P. Tuning of selective solar photocatalysis by Mn2+ decorated nanocrystalline mesoporous TiO2. Sol Energy. 2017;158:774–781. doi: 10.1016/j.solener.2017.10.046
  • Zhou W, He Y. Ho/TiO2 nanowires heterogeneous catalyst with enhanced photocatalytic properties by hydrothermal synthesis method. Chem Eng J. 2011;179:412–416. doi: 10.1016/j.cej.2011.10.094
  • Cai H, Chen X, Li Q, et al. Enhanced photocatalytic activity from Gd. La codoped TiO2 nanotube array photocatalysts under visible-light irradiation. Appl Surf Sci 2013;284:837–842. doi: 10.1016/j.apsusc.2013.08.018
  • Farrokhi M, Hosseini S-C, Yang J-K, et al. Application of ZnO-Fe3O4 nanocomposite on the removal of azo dye from aqueous solutions: kinetics and equilibrium studies. Water Air Soil Pollut. 2014;225:1–12. doi: 10.1007/s11270-014-2113-8
  • ISO. Water quality: determination of the inhibitory effect of water samples on the light emission of vibrio fischeri (luminescent bacteria test), ISO 11348-1, 2 and 3. Geneva: International Standardization Organization; 1998.
  • Wang Chao, Ao Yanhui, Wang Peifang. Preparation, characterization and photocatalytic activity of the neodymium-doped TiO2 hollow spheres. Applied Surface Science. 2010;257(1):227–231. https://doi.org/10.1016/j.apsusc.2010.06.071
  • Meksi M, Kochkar H, Berhault G, et al. Effect of cerium content and post-thermal treatment on doped anisotropic TiO2 nanomaterials and kinetic study of the photodegradation of formic acid. J Mol Catal A-Chem. 2015;409:162–170. doi: 10.1016/j.molcata.2015.08.024
  • Chen K, Xie S, Iglesia E, et al. Structure and properties of zirconia-supported molybdenum oxide catalysts for oxidative dehydrogenation of propane. J Catal. 2000;189:421–430. doi: 10.1006/jcat.1999.2720
  • Abdullah H, Khan MR, Pudukudy M, et al. CeO2–TiO2 as a visible light active catalyst for the photoreduction of CO2 to methanol. J Rare Earth. 2015;33:1155–1161. doi: 10.1016/S1002-0721(14)60540-8
  • Xiao G, Zhou J, Huang X, et al. Facile synthesis of mesoporous sulfated Ce/TiO2 nanofiber solid superacid with nanocrystalline frameworks by using collagen fibers as a biotemplate and its application in esterification. RSC Adv. 2014;4:4010–4019. doi: 10.1039/C3RA44083D
  • Trujillo-Navarrete Balter, del Pilar Haro-Vázquez María, Félix-Navarro Rosa María. Effect of Nd3+ doping on structure, microstructure, lattice distortion and electronic properties of TiO2 nanoparticles. Journal of Rare Earths. 2017;35(3):259–270. https://doi.org/10.1016/S1002-0721 doi: 10.1016/S1002-0721(17)60909-8
  • D’Souza LP, Shwetharani R, Amoli V, et al. Photoexcitation of neodymium doped TiO2 for improved performance in dye-sensitized solar cells. Mater Des. 2016;104:346–354. doi: 10.1016/j.matdes.2016.05.007
  • Magesh G, Viswanathan B, Viswanath RP, et al. Photocatalytic behavior of CeO2–TiO2 system for the degradation of methylene blue. Indian J Chem. 2009;48A:480–488.
  • Aman N, Sataphathy PK, Mishra T, et al. Synthesis and photocatalytic activity of mesoporous cerium doped TiO2 as visible light sensitive photocatalyst. Mater Res Bull. 2012;47:179–183. doi: 10.1016/j.materresbull.2011.11.049
  • Sun D, Wang K, Xu Z, et al. Synthesis and photocatalytic activity of sulfate modified Nd-doped TiO2 under visible light irradiation. J Rare Earth. 2015;33:491–497. doi: 10.1016/S1002-0721(14)60446-4
  • Khalid NR, Ahmed E, Hong Z, et al. Synthesis and photocatalytic properties of visible light responsive La/TiO2-graphene composites. Appl Surf Sci. 2012;263:254–259. doi: 10.1016/j.apsusc.2012.09.039
  • Wang Q, Xu S, Shen F. Preparation and characterization of TiO2 photocatalysts co-doped with iron (III) and lanthanum for the degradation of organic pollutants. Appl Surf Sci. 2011;257:7671–7677. doi: 10.1016/j.apsusc.2011.03.157
  • Park DJ, Sekino T, Tsukuda S, et al. Synthesis of Sm-doped TiO2 nanotubes and analysis of their methylene blue-removal properties under dark and UV-irradiated conditions. Res Chem Intermed 2013;39:1581–1591. doi: 10.1007/s11164-012-0614-x
  • Xiao Q, Si Z, Zhang J, et al. Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. J Hazard Mat. 2008;150:62–67. doi: 10.1016/j.jhazmat.2007.04.045
  • Grover IS, Singh S, Pal B. The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of different shapes. Appl Surf Sci. 2013;280:366–372. doi: 10.1016/j.apsusc.2013.04.163
  • Arjmandi N, Roy WV, Lagae L, et al. Measuring the electric charge and zeta potencial of nanometer-sized objects using pyramidal-shaped nanopores. Anal Chem. 2012;84:8490–8496. doi: 10.1021/ac300705z
  • Belver C, Bedia J, Álvarez-Montero MA, et al. Solar photocatalytic purification of water with Ce-doped TiO2/clay heterostructures. Catal Today. 2016;266:36–45. doi: 10.1016/j.cattod.2015.09.025
  • Koh PW, Hatta MHM, Ong ST, et al. Photocatalytic degradation of photosensitizing and non-photosensitizing dyes over chromium doped titania photocatalysts under visible light. J Photoch Photobio A. 2017;323:215–223. doi: 10.1016/j.jphotochem.2016.08.027
  • Rapsomanikis A, Apostolopoulou A, Stathatos E, et al. Cerium-modified TiO2 nanocrystalline films for visible light photocatalytic activity. J Photoch Photobio A. 2014;280:46–53. doi: 10.1016/j.jphotochem.2014.02.009
  • Vieira GB, José HJ, Peterson M, et al. Ceo2/TiO2 nanostructures enhance adsorption and photocatalytic degradation of organic compounds in aqueous suspension. J Photoch Photobio A. 2018;353:325–336. doi: 10.1016/j.jphotochem.2017.11.045
  • Houas A, Lachheb H, Ksibi M, et al. Photocatalytic degradation pathway of methylene blue in water. Appl Catal B Environ 2001;31:145–157. doi: 10.1016/S0926-3373(00)00276-9
  • Dulian P, Nachit W, Jaglarz J, et al. Photocatalytic methylene blue degradation on multilayer transparent TiO2 coatings. Opt Mater. 2019;90:264–272. doi: 10.1016/j.optmat.2019.02.041
  • Ray S-K, Dhakal D, Kshetri YK, et al. Cu-α-NiMoO4 photocatalyst for degradation of methylene blue with pathways and antibacterial performance. J Photochem Photobio. 2017;348:18–32. doi: 10.1016/j.jphotochem.2017.08.004
  • Nguyen CH, Fu C-C, Juang R-S. Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: efficiency and degradation pathways. J Clean Prod. 2018;202:413–427. doi: 10.1016/j.jclepro.2018.08.110
  • Ma Z, Hu L, Li X, et al. A novel nano-sized MoS2 decorated Bi2O3 heterojunction with enhanced photocatalytic performance for methylene blue and tetracycline degradation. Ceram Int. 2019;45:15824–15833. doi: 10.1016/j.ceramint.2019.05.085
  • Gomez V, Balu AM, Serrano-Ruiz JC, et al. Microwave-assisted mild-temperature preparation of neodymium-doped titania for the improved photodegradation of water contaminants. Appl Catal A-Gen. 2012;441–442:47–53. doi: 10.1016/j.apcata.2012.07.003
  • Liu H, Wang M, Wang Y, et al. Ionic liquid-templated synthesis of mesoporous CeO2–TiO2 nanoparticles and their enhanced photocatalytic activities under UV or visible light. J Photoch Photobio A. 2011;223:157–164. doi: 10.1016/j.jphotochem.2011.06.014
  • Barkul RP, Patil MK, Patil SM, et al. Sunlight-assisted photocatalytic degradation of textile effluent and rhodamine B by using doped TiO2 nanoparticles. J Photoch Photobio A. 2017;349:138–147. doi: 10.1016/j.jphotochem.2017.09.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.