731
Views
12
CrossRef citations to date
0
Altmetric
Articles

Combustion performance of hydrogen-enriched fuels in a premixed burner

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2-13 | Received 02 Oct 2018, Accepted 08 Aug 2019, Published online: 20 Aug 2019

References

  • Özdemir IB, Kantaş M. Investigation of partially-premixed combustion in a household cooker-top burner. Fuel Process Technol. 2016;151:107–116. doi: 10.1016/j.fuproc.2016.04.039
  • Kuntikana P, Prabhu SV. Thermal investigations on methane-air premixed flame jets of multi-port burners. Energy. Mar. 2017;123:218–228. doi: 10.1016/j.energy.2017.01.122
  • Yu B, Kum SM, Lee CE, et al. Combustion characteristics and thermal efficiency for premixed porous-media types of burners. Energy. 2013;53:343–350. doi: 10.1016/j.energy.2013.02.035
  • Yu B, Kum S-M, Lee C-E, et al. Effects of exhaust gas recirculation on the thermal efficiency and combustion characteristics for premixed combustion system. Energy. Jan. 2013;49:375–383. doi: 10.1016/j.energy.2012.10.057
  • Senthilkumar G, Sajin JB, Yuvarajan D, et al. Evaluation of emission, performance and combustion characteristics of dual fuelled research diesel engine. Environ Technol. Aug. 2018: 1–8. doi: 10.1080/09593330.2018.1509888
  • Klajn FF, Gurgacz F, Lenz AM, et al. Comparison of the emissions and performance of ethanol-added diesel–biodiesel blends in a compression ignition engine with those of pure diesel. Environ Technol. Aug. 2018: 1–10. doi: 10.1080/09593330.2018.1504122
  • Oreskes N. BEYOND THE IVORY TOWER: the scientific consensus on climate change. Science. Dec. 2004;306(5702):1686–1686. doi: 10.1126/science.1103618
  • Lockwood M. Solar change and climate: an update in the light of the current exceptional solar minimum. Proc R Soc A Math Phys Eng Sci. Feb. 2010;466(2114):303–329. doi: 10.1098/rspa.2009.0519
  • Yangaz MU. Investigation of the effects of industrial gas burner modifications on emissions and efficiency. Marmara University, 2018.
  • Boggavarapu P, Ray B, Ravikrishna RV. Thermal efficiency of LPG and PNG-fired burners: experimental and numerical studies. Fuel. 2014;116:709–715. doi: 10.1016/j.fuel.2013.08.054
  • Muthukumar P, Shyamkumar PI. Development of novel porous radiant burners for LPG cooking applications. Fuel. 2013;112:562–566. doi: 10.1016/j.fuel.2011.09.006
  • Liu B, Bao B, Wang Y, et al. Numerical simulation of flow, combustion and NO emission of a fuel-staged industrial gas burner. J Energy Inst. Jun. 2017;90(3):441–451. doi: 10.1016/j.joei.2016.03.005
  • Strojnik M, Paez G, Scholl M. Combustion initiation and evolution during the first 400ms in a gas burner at 10μm. Infrared Phys Technol. 2013;61:42–49. doi: 10.1016/j.infrared.2013.06.001
  • Hou S-S, Lee C-Y, Lin T-H. Efficiency and emissions of a new domestic gas burner with a swirling flame. Energy Convers Manag. May 2007;48(5):1401–1410. doi: 10.1016/j.enconman.2006.12.001
  • Liu H, Dong S, Li B-W, et al. Parametric investigations of premixed methane–air combustion in two-section porous media by numerical simulation. Fuel. Jul. 2010;89(7):1736–1742. doi: 10.1016/j.fuel.2009.06.001
  • Karagiannaki C, Dogkas E, Paterakis G, et al. A comparison of the characteristics of disk stabilized lean propane flames operated under premixed or stratified inlet mixture conditions. Exp Therm Fluid Sci. Nov. 2014;59:264–274. doi: 10.1016/j.expthermflusci.2014.04.002
  • De A, Acharya S. Parametric study of upstream flame propagation in hydrogen-enriched premixed combustion: effects of swirl, geometry and premixedness. Int J Hydrogen Energy. Oct. 2012;37(19):14649–14668. doi: 10.1016/j.ijhydene.2012.07.008
  • Boushaki T, Dhué Y, Selle L, et al. Effects of hydrogen and steam addition on laminar burning velocity of methane–air premixed flame: experimental and numerical analysis. Int J Hydrogen Energy. Jun. 2012;37(11):9412–9422. doi: 10.1016/j.ijhydene.2012.03.037
  • Miao J, Leung CW, Cheung CS, et al. Effect of hydrogen addition on overall pollutant emissions of inverse diffusion flame. Energy. Jun. 2016;104:284–294. doi: 10.1016/j.energy.2016.03.114
  • Burbano HJ, Amell AA, García JM. Effects of hydrogen addition to methane on the flame structure and CO emissions in atmospheric burners. Int J Hydrogen Energy. Jul. 2008;33(13):3410–3415. doi: 10.1016/j.ijhydene.2008.04.020
  • Schefer RW, Wicksall DM, Agrawal AK. Combustion of hydrogen-enriched methane in a lean premixed swirl-stabilized burner. Proc Combust Inst. Jan. 2002;29(1):843–851. doi: 10.1016/S1540-7489(02)80108-0
  • Ji C, Wang S. Effect of hydrogen addition on combustion and emissions performance of a spark ignition gasoline engine at lean conditions. Int J Hydrogen Energy. Sep. 2009;34(18):7823–7834. doi: 10.1016/j.ijhydene.2009.06.082
  • de Santoli L, Paiolo R, Lo Basso G. An overview on safety issues related to hydrogen and methane blend applications in domestic and industrial use. Energy Procedia. Sep. 2017;126:297–304. doi: 10.1016/j.egypro.2017.08.224
  • Karagöz Y, Orak E, Yüksek L, et al. Effect of hydrogen addition on exhaust emissions and performance of a spark ignition engine. Environ Eng Manag J. 2015;14(3):665–672. doi: 10.30638/eemj.2015.074
  • Kakaç S, Pramuanjaroenkij A, Zhou XY. A review of numerical modeling of solid oxide fuel cells. Int J Hydrog Energy. 2007;32(7):761–786. doi: 10.1016/j.ijhydene.2006.11.028
  • Yangaz MU, Çiftçioğlu GA, Kadırgan MAN. Comparison of conventional and modified burners in performance with different fuels using a linear and a non-linear eddy-viscosity turbulence model. J Appl Fluid Mech. 2019;12(6):2069–2081. doi: 10.29252/jafm.12.06.29870
  • AFDC. Alternative fuels data center – fuel properties comparison, 2014; [cited 2017 Nov 30] Available from: http://www.afdc.energy.gov/fuels/fuel_comparison_chart.pdf
  • Naskeo Environnement. Biogas composition. The Biogas. p. 1, 2009.
  • Turns SR. An introduction to combustion: concepts and applications. New York, U.S.A.: McGraw-Hill; 2012.
  • Miller JA, Bowman CT. Mechanism and modeling of nitrogen chemistry in combustion. Prog Energy Combust Sci. Jan. 1989;15(4):287–338. doi: 10.1016/0360-1285(89)90017-8
  • Correa SM, Smooke MD. Nox in parametrically varied methane flames. Symp Combust. Jan. 1991;23(1):289–295. doi: 10.1016/S0082-0784(06)80272-9
  • Rutar T, Lee JCY, Dagaut P, et al. NOx formation pathways in lean-premixed-prevapourized combustion of fuels with carbon-to-hydrogen ratio between 0.25 and 0.88. Proc Inst Mech Eng Part A J Power Energy. May 2007;221(3):387–398. doi: 10.1243/09576509JPE288
  • Şener R, Özdemir MR, Yangaz MU. The combustion characteristics and performance evaluation of hydrogen addition to various fuels in a premixed burner.In 6th European Conference on Renewable Energy Systems, Istanbul/TURKEY; 2018, p. 462–471.
  • Westbrook CK, Dryer FL. Chemical kinetic modeling of hydrocarbon combustion. Prog Energy Combust Sci. Jan. 1984;10(1):1–57. doi: 10.1016/0360-1285(84)90118-7
  • Westbrook CK, Pitz WJ. A comprehensive chemical kinetic reaction mechanism for oxidation and pyrolysis of propane and Propene. Combust Sci Technol. May 1984;37(3–4):117–152. doi: 10.1080/00102208408923750
  • “Ch 2.4 Residence Time.” [cited 2019 Apr 28]. Available from: http://www3.geosc.psu.edu/~dmb53/DaveSTELLA/modeling/ch2.4.html
  • “Enthalpy of combustion – an overview | ScienceDirect Topics.” [cited 2019 Apr 28]. Available from: https://www.sciencedirect.com/topics/chemistry/enthalpy-of-combustion

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.