303
Views
4
CrossRef citations to date
0
Altmetric
Articles

Functional sustainability of nutrient accumulation by periphytic biofilm under temperature fluctuations

, , , , , , & ORCID Icon show all
Pages 1145-1154 | Received 29 Apr 2019, Accepted 15 Aug 2019, Published online: 27 Aug 2019

References

  • Thornton PK, Ericksen PJ, Herrero M, et al. Climate variability and vulnerability to climate change: a review. Glob Change Biol. 2014;20:3313–3328. doi: 10.1111/gcb.12581
  • Wang J, Soininen J. Thermal barriers constrain microbial elevational range size via climate variability. Environ Microbiol. 2017;19:3283–3296. doi: 10.1111/1462-2920.13823
  • Thomas MK, Kremer CT, Klausmeier CA, et al. A global pattern of thermal adaptation in marine phytoplankton. Science. 2012;338:1085. doi: 10.1126/science.1224836
  • Zhou J, Deng Y, Shen L, et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat Commun. 2016;7:12083. doi: 10.1038/ncomms12083
  • Guo X, Feng J, Shi Z, et al. Climate warming leads to divergent succession of grassland microbial communities. Nat Climate Change. 2018;8:813–818. doi: 10.1038/s41558-018-0254-2
  • Battin TJ, Besemer K, Bengtsson MM, et al. The ecology and biogeochemistry of stream biofilms. Nat Rev Microbiol. 2016;14:251–263. doi: 10.1038/nrmicro.2016.15
  • Schindlbacher A, Schnecker J, Takriti M, et al. Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest – no indications for thermal adaptations. Glob Chang Biol. 2015;21:4265–4277. doi: 10.1111/gcb.12996
  • Reedich LM, Millican MD, Koch PL. Temperature impacts on Soil microbial communities and potential implications for the biodegradation of turfgrass pesticides. J Environ Qua. 2017;46:490–497. doi: 10.2134/jeq2017.02.0067
  • Ward L, Taylor MW, Power JF, et al. Microbial community dynamics in Inferno Crater lake, a thermally fluctuating geothermal spring. ISME J. 2017;11:1158–1167. doi: 10.1038/ismej.2016.193
  • Li J, Deng K, Hesterberg D, et al. Mechanisms of enhanced inorganic phosphorus accumulation by periphyton in paddy fields as affected by calcium and ferrous ions. Sci Total Environ. 2017;609:466–475. doi: 10.1016/j.scitotenv.2017.07.117
  • Qiu H, Geng J, Ren H, et al. Phosphite flux at the sediment–water interface in northern lake Taihu. Sci Total Environ. 2016;543:67–74. doi: 10.1016/j.scitotenv.2015.10.136
  • Flemming HC, Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms. Nat Rev Microbiol. 2019;17:247–260. doi: 10.1038/s41579-019-0158-9
  • Wu Y, Liu J, Shen R, et al. Mitigation of nonpoint source pollution in rural areas: from control to synergies of multi ecosystem services. Sci Total Environ. 2017;607–608:1376–1380. doi: 10.1016/j.scitotenv.2017.07.105
  • McCormick PV, Shuford RBE, Chimney MJ. Periphyton as a potential phosphorus sink in the Everglades Nutrient Removal Project. Ecol Eng. 2006;27:279–289. doi: 10.1016/j.ecoleng.2006.05.018
  • Battin TJ, Kaplan LA, Denis Newbold J, et al. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature. 2003;426:439–442. doi: 10.1038/nature02152
  • Liu J, Wu Y, Wu C, et al. Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review. Bioresour Technol. 2017;241:1127–1137. doi: 10.1016/j.biortech.2017.06.054
  • Giaouris E, Heir E, Desvaux M, et al. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front Microbiol. 2015;6:841. doi: 10.3389/fmicb.2015.00841
  • Rosenfeld JS. Functional redundancy in ecology and conservation. Oikos. 2002;98:156–162. doi: 10.1034/j.1600-0706.2002.980116.x
  • Bradford MA, Davies CA, Frey SD, et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett. 2010;11:1316–1327. doi: 10.1111/j.1461-0248.2008.01251.x
  • Hill WR, Middleton RG. Changes in carbon stable isotope ratios during periphyton development. Limnol Oceanogr. 2006;51:2360–2369. doi: 10.4319/lo.2006.51.5.2360
  • Liu J, Tang J, Wan J, et al. Functional sustainability of periphytic biofilms in organic matter and Cu2+ removal during prolonged exposure to TiO2 nanoparticles. J Hazard Mater. 2019;370:4–12. doi: 10.1016/j.jhazmat.2017.08.068
  • Jonsson M, Malmqvist B. Ecosystem process rate increases with animal species richness: evidence from leaf-eating, aquatic insects. Oikos. 2000;89:519–523. doi: 10.1034/j.1600-0706.2000.890311.x
  • Reay DS, Nedwell DB, Priddle J, et al. Temperature dependence of inorganic nitrogen uptake: reduced affinity for nitrate at suboptimal temperatures in both algae and bacteria. Appl Environ Microbiol. 1999;65:2577–2584.
  • Amin SA, Parker MS, Armbrust EVJM, et al. Interactions between diatoms and bacteria. Microbiol Mol Biol Rev. 2012;76:667–684. doi: 10.1128/MMBR.00007-12
  • Rogers J, Dowsett AB, Dennis PJ, et al. Influence of temperature and plumbing material selection on biofilm formation and growth of Legionella pneumophila in a model potable water system containing complex microbial flora. Appl Environ Microbiol. 1994;60:1585–1592.
  • Metcalf JL, Xu ZZ, Weiss S, et al. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science. 2016;351:158–162. doi: 10.1126/science.aad2646
  • García FC, Bestion E, Warfield R, et al. Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc Natl Acad Sci USA. 2018;115:10989–10994. doi: 10.1073/pnas.1805518115
  • Zak J, Willig M, Moorhead D, et al. Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem. 1994;26:1101–1108. doi: 10.1016/0038-0717(94)90131-7
  • Weber KP, Legge RL. One-dimensional metric for tracking bacterial community divergence using sole carbon source utilization patterns. J Microbiol Methods. 2009;79:55–61. doi: 10.1016/j.mimet.2009.07.020
  • Frostegård Å, Bååth E, Tunlio A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem. 1993;25:723–730. doi: 10.1016/0038-0717(93)90113-P
  • Boschker HTS, Kromkamp JC, Middelburg JJ. Biomarker and carbon isotopic constraints on bacterial and algal community structure and functioning in a turbid, tidal estuary. Limnol Oceanogr. 2005;50:70–80. doi: 10.4319/lo.2005.50.1.0070
  • APHA. Standard methods for the examination of water and wastewater. 20th ed. Washington (DC): American Public Health Association/American Water Work Association/Water Environmental Federation; 1998.
  • Rao CRM, Reddi GS. Decomposition procedure with aquaregia and hydrofluoric acid at room temperature for the spectrophotometric determination of phosphorus in rock and minerals. Anal Chem Acta. 1990;237:251–252. doi: 10.1016/S0003-2670(00)83926-4
  • Nielsen FS, Jensen KF, Rowland P, et al. Purification and characterization of dihydroorotate dehydrogenase a from lactococcus lactis, crystallization and preliminary X-ray diffraction studies of the enzyme. Protein Sci. 1996;5:852–856. doi: 10.1002/pro.5560050506
  • Stewart TJ, Traber J, Kroll A, et al. Characterization of extracellular polymeric substances (EPS) from periphyton using liquid chromatography-organic carbon detection–organic nitrogen detection (LC-OCD-OND). Environ Sci Pollut Res. 2013;20:3214–3223. doi: 10.1007/s11356-012-1228-y
  • Diffenbaugh NS, Field CB. Changes in ecologically critical terrestrial climate conditions. Science. 2013;341:486–492. doi: 10.1126/science.1237123
  • Widder S, Allen RJ, Pfeiffer T, et al. Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME J. 2016;10:2557–2568. doi: 10.1038/ismej.2016.45
  • Mensens C, De Laender F, Janssen CR, et al. Stressor-induced biodiversity gradients: revisiting biodiversity–ecosystem functioning relationships. Oikos. 2015;124:677–684. doi: 10.1111/oik.01904
  • Cardinale BJ. Biodiversity improves water quality through niche partitioning. Nature. 2011;472:86–89. doi: 10.1038/nature09904
  • Isbell F, Calcagno V, Hector A, et al. High plant diversity is needed to maintain ecosystem services. Nature. 2011;477:199–202. doi: 10.1038/nature10282
  • Hawkes CV, Keitt TH. Resilience vs. historical contingency in microbial responses to environmental change. Ecol Lett. 2015;18:612–625. doi: 10.1111/ele.12451
  • Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA. 2008;105:11512–11519. doi: 10.1073/pnas.0801925105
  • Marshall DJ, Burgess SC. Deconstructing environmental predictability: seasonality, environmental colour and the biogeography of marine life histories. Ecol Lett. 2015;18:174–181. doi: 10.1111/ele.12402
  • Ashley S, Hannes P, Allison SD, et al. Fundamentals of microbial community resistance and resilience. Front Microbiol. 2012;3:417.
  • Jones CG, Lawton JH, Shachak M. Positive and negative effects of organisms as physical ecosystem engineers. Ecology. 1997;78:1946–1957. doi: 10.1890/0012-9658(1997)078[1946:PANEOO]2.0.CO;2
  • Corbo MR, Bevilacqua A, Campaniello D, et al. Prolonging microbial shelf life of foods through the use of natural compounds and non-thermal approaches – a review. Int J Food Sci Tech. 2010;44:223–241. doi: 10.1111/j.1365-2621.2008.01883.x
  • Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: networks, competition, and stability. Science. 2015;350:663. doi: 10.1126/science.aad2602
  • Elshouny WAE, El-Sheekh MM, Sabae SZ, et al. Antimicrobial activity of Spirulina platensis against aquatic bacterial isolates. J Microbio Biotechnol Food Sci. 2017;6:1203–1208. doi: 10.15414/jmbfs.2017.6.5.1203-1208
  • Wallenstein MD. Microbial community-level responses to warming and altered precipitation patterns determine terrestrial carbon-climate feedbacks. In: Freedman B, editor. Global environmental change. Dordrecht: Springer Netherlands; 2014. p. 349–354.
  • Meyer O. Functional groups of microorganisms. In: Schulze ED, Mooney HA, editor. Biodiversity and ecosystem function. Berlin: Springer-Verlag; 1994.
  • Nemergut DR, Schmidt SK, Fukami T, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77:342–356. doi: 10.1128/MMBR.00051-12
  • Paul EA. Soil microbiology, ecology and biochemistry. Pittsburgh: Academic Press; 2014.
  • Leopold DR, Wilkie JP, Dickie IA, et al. Priority effects are interactively regulated by top-down and bottom-up forces: evidence from wood decomposer communities. Ecol Lett. 2017;20:1054–1063. doi: 10.1111/ele.12803
  • Mori A, Isbell F, Seidl R. β-Diversity, community assembly, and ecosystem functioning. Trends Ecol Evol. 2018;33:549–564. doi: 10.1016/j.tree.2018.04.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.