571
Views
19
CrossRef citations to date
0
Altmetric
Articles

Degradation of glyphosate herbicide by an electro-Fenton process using carbon felt cathode

, , , , , & show all
Pages 1155-1164 | Received 31 Oct 2018, Accepted 20 Aug 2019, Published online: 30 Aug 2019

References

  • Van Hoi P, Mol APJ, Oosterveer PJM. State governance of pesticide use and trade in Vietnam. NJAS - Wageningen J Life Sci. 2013;67:19–26. doi: 10.1016/j.njas.2013.09.001
  • Monographs on the evaluation of the carcinogenic risks to humans. Supplement 7. Int Agency Res Cancer (IARC). 1987;42:40–51.
  • Kolpin DW, Thurman EM, Goolsby DA. Occurrence of selected pesticides and their metabolites in near-surface aquifers of the Midwestern United States. Environ Sci Technol. 1996;30(1):335–340. doi: 10.1021/es950462q
  • Woodburn AT. Glyphosate: production, pricing and use worldwide. Pest Manag Sci. 2000;56:309–312. doi: 10.1002/(SICI)1526-4998(200004)56:4<309::AID-PS143>3.0.CO;2-C
  • Baylis AD. Why glyphosate is a global herbicide: strengths, weaknesses and prospects. Pest Manag Sci. 2000;56:299–308. doi: 10.1002/(SICI)1526-4998(200004)56:4<299::AID-PS144>3.0.CO;2-K
  • Duke SO, Powles SB. Glyphosate: a once-in-a-century herbicide. Pest Manag Sci. 2008;64:319–325. doi: 10.1002/ps.1518
  • Henderson AM, Gervais JA, Luukinen B, et al. Glyphosate technical fact sheet. Corvallis, Oregon, United State: National Pesticide Information Center, Oregon State University Extension Services; 2010.
  • Myers JP, Antoniou MN, Blumberg B, et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ Health. 2016;15(1):19–32. doi: 10.1186/s12940-016-0117-0
  • Bradberry SM, Proudfoot AT, Allister Vale J. Glyphosate poisoning. Toxicol Rev. 2004;23:159–167. doi: 10.2165/00139709-200423030-00003
  • Botta F, Lavison G, Couturier G, et al. Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems. Chemosphere. 2009;77:133–139. doi: 10.1016/j.chemosphere.2009.05.008
  • Pérez GL, Torremorell A, Mugni H, et al. Effects of herbicide roundup on freshwater microbial communities: a mesocosm study. Ecol Appl. 2007;17:2310–2322. doi: 10.1890/07-0499.1
  • Van Bruggen AC, He MM, Shin K, et al. Environmental and health effects of the herbicide glyphosate. Sci Total Environ. 2018;616-617:255–268. doi: 10.1016/j.scitotenv.2017.10.309
  • Guyton KZ, Loomis D, Grosse YEL, et al. Carcinogenicity of Tetrachlorvinphos, parathion, Malathion, Diazinon, and glyphosate. Lancet Oncol. 2015;16:490–491. doi: 10.1016/S1470-2045(15)70134-8
  • Schinasi L, Leon ME. Non-Hodgkin lymphoma and occupational exposure to agricultural pesticide chemical groups and active ingredients: a systematic review and meta-analysis. Int J Environ Res Public Health. 2014;11(4):4449–4527. doi: 10.3390/ijerph110404449
  • Jesionowski T. Characterisation of pigments obtained by adsorption of C.I. Basic Blue and C.I. Acid Orange 52 dyes onto silica particles precipitated via the emulsion route. Dyes Pigments. 2005;67:81–92. doi: 10.1016/j.dyepig.2003.11.019
  • Bes-Pía A, Mendoza-Rota JA, Roig-Alcover L, et al. Comparison between nanofiltration and oxzonation of biologically treated textile wastewater for its reuse in the industry. Desalination. 2003;157:81–86. doi: 10.1016/S0011-9164(03)00386-2
  • Zissi U, Lyberatos G, Pavlou S. Biodegradation of p-Aminoazobenene by Bacillus Subtilis under aerobic conditions. J Ind Microbiol Biotechnol. 1997;19:49–55. doi: 10.1038/sj.jim.2900418
  • Lourenc ND, Novais JM, Pinheiro HM. Effect of some operational parameters on textile dye biodegradation in a sequential batch reactor. J Biotechnol. 2001;89:163–174. doi: 10.1016/S0168-1656(01)00313-3
  • Adosinda M, Martins M, Lima N, et al. Comparative studies of fungal degradation of single or mixed bioaccessible reactive azo dyes. Chemosphere. 2003;52:967–973. doi: 10.1016/S0045-6535(03)00286-8
  • Pazarlioglu NK, Urek RO, Ergun F. Biodecolourization of Direct Blue 15 by immobilized Phanerochaete chrysosporium. Process Biochem. 2005;40:1923–1929. doi: 10.1016/j.procbio.2004.07.005
  • Yeh RYL. Colour difference measurement of color removal from dye wastewater using different adsorbents. J Chem Technol Biotechnol. 1995;63:55–59. doi: 10.1002/jctb.280630108
  • Malato S, Blanco J, Maldonado MI, et al. Optimizing solar photocatalyticmineralization of pesticides by adding inorganic oxidizing species; application to the recycling of pesticide containers. Appl Catal B. 2000;28:163–174. doi: 10.1016/S0926-3373(00)00175-2
  • Boye B, Diang MM, Brillas E. Degradation of herbicide 4- chlorophenoxyacetic acid by advanced electrochemical oxidation methods. Environ Sci Technol. 2002;36:3030–3035. doi: 10.1021/es0103391
  • Gözmen B, Oturan MA, Oturan N, et al. Indirect electrochemical treatment of bisphenol a in water via electrochemically generated Fenton’s reagent. Environ Sci Technol. 2003;37:3716–3723. doi: 10.1021/es034011e
  • Guivarch E, Trevin S, Lahitte C, et al. Degradation of azo dyes in water by electro–Fenton process. Environ Chem Lett. 2003;1:38–44. doi: 10.1007/s10311-002-0017-0
  • Brillas E, Boye B, Sires I, et al. Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochim Acta. 2004;49:4487–4496. doi: 10.1016/j.electacta.2004.05.006
  • Bhaskara BL, Nagaraja P. Direct sensitive spectrophotometric determination of glyphosate by using ninhydrin as a chromogenic reagent in formulations and environmental water samples. Helv Chim Acta. 2006;89(11):2686–2693. doi: 10.1002/hlca.200690240
  • Kormann C, Bahnemann DW, Hoffmann MR. Photocatalytic production of H2O2 and organic peroxides in aqueous suspensions of TiO2, ZnO, and desert sand. Environ Sci Technol. 1988;22:798–806. doi: 10.1021/es00172a009
  • Brillas E, Sires I, Oturan MA. Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry. Chem Rev. 2009;109(12):6570–6631. doi: 10.1021/cr900136g
  • Bounab L, Iglesias O, González-Romero E, et al. Effective heterogeneous electro-Fenton process of m-cresol with iron loaded actived carbon. RSC Adv. 2015;5:31049–31056. doi: 10.1039/C5RA03050A
  • Tu U, Topal S, Oduncu E, et al. Treatment of tissue paper wastewater: application of electro-Fenton method. Int J EnvironSci Dev. 2015;6(6):415–418.
  • Huachun L, Wenjing H, Aimin W, et al. An activated carbon fiber cathode for the degradation of glyphosate in aqueous solutions by the electro-Fenton mode: optimal operational conditions and the deposition of iron on cathode on electrode reusability. Water Res. 2016;105(2016):575–582.
  • Nader D, Alizare K, Morteza K. Comparative study of dye solution treatment by electro-Fenton process using carbon paper and carbon paper modified with carbon nanotubes as cathode. Fresenius Environ Bull. 2012;21(12b):4022–4029.
  • Gong Y, Lan H, Li J, et al. Mineralization of pesticide glyphosate wastewater by photoelectro-Fenton process. Chinese J Environ Eng. 2016;10(8):3999–4003.
  • Martins RC, Amaral-Silva N, Quinta-Ferreira RM. Ceria based solid catalysts for Fenton’s depuration of phenolic wastewaters, biodegradability enhancement and toxicity removal. Appl Catal B. 2010;99:135–144. doi: 10.1016/j.apcatb.2010.06.010
  • Wang CT, Chou WL, Chung MH, et al. COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode. Desalination. 2010;253:129–134. doi: 10.1016/j.desal.2009.11.020
  • Lin AYC, Lin CF, Chiou JM, et al. O3 and O3/H2O2 treatment of sulfonamide and macrolide antibiotics in wastewater. J Hazard Mater. 2009;171:452–458. doi: 10.1016/j.jhazmat.2009.06.031
  • Eisenhauer HR. Oxidation of phenolic wastes. J Water Pollut Control Fed. 1964;36:1117–1127.
  • Lunar L, Sicila D, Rubio S, et al. Degradation of photographic developers by Fenton's reagent: condition optimization and kinetics for metol oxidation. Water Resour. 2000;34:1791–1802.
  • Xu L, Wang J. A heterogeneous Fenton like system with nanoparticulate ZVI for removal of 4 chloro 3 methyl phenol. J Hazard Mater. 2011;186:256–264. doi: 10.1016/j.jhazmat.2010.10.116
  • Kwon BG, Lee DS, Kang N, et al. Characteristics of p-chlorophenol oxidation by Fenton's reagent. Water Res. 1999;33(9):2110–2118. doi: 10.1016/S0043-1354(98)00428-X
  • Ting WP, Lu MC, Huang YH. Kinetics of 2,6-dimethylaniline degradation by electro-Fenton process. J Hazard Mater. 2009;161(2-3):1484–1490. doi: 10.1016/j.jhazmat.2008.04.119
  • Zhou L, Zhou M, Zhang C, et al. Electro-Fenton degradation of p-nitrophenol using the anodized graphite felts. Chem Eng J. 2013;233:185–192. doi: 10.1016/j.cej.2013.08.044
  • Dirany A, Sires I, Oturan N, et al. Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere. 2010;81:594–602. doi: 10.1016/j.chemosphere.2010.08.032
  • Oturan MA, Edelahi MC, Oturan N, et al. Kinetics of oxidative degradation/mineralization pathways of the phenylurea herbicides diuron, monuron and fenuron in water during application of the electro-Fenton process. Appl Catal B. 2010;97:82–89. doi: 10.1016/j.apcatb.2010.03.026
  • Gattrell M, Kirk DW. The electrochemical oxidation of aqueous phenol at a glassy carbon electrode. Can J Chem Eng. 1990;68:997–1003. doi: 10.1002/cjce.5450680615
  • Panizza M, Cerisola G. Direct and mediated anodic oxidation of organic pollutants. Chem Rev. 2009;109:6541–6569. doi: 10.1021/cr9001319
  • Jorgen J, Rob C, Torn H. Removal and degradation of glyphosate in water treatment: a review. J Water Supply: Res Technol-Aqua. 2013;62(7):395–408. doi: 10.2166/aqua.2013.080
  • Tang WZ, Chen RZ. Decolorization kinetics and mechanisms of commercial dyes by H2O2/iron powder system. Chemosphere. 1996;32(5):947–958. doi: 10.1016/0045-6535(95)00358-4
  • Pajootan E, Arami M, Rahimdokht M. Discoloration of wastewater in a continuous electro-Fenton process using modified graphite electrode with multi-walled carbon nanotubes/surfactant. Sep Purif Technol. 2014;130:34–44. doi: 10.1016/j.seppur.2014.04.025
  • Panizza M, Cerisola G. Removal of organic pollutants from industrial wastewater by electrogenerated Fenton’s reagent. Water Res. 2001;35:3987–3992. doi: 10.1016/S0043-1354(01)00135-X
  • Neyens E, Baeyens J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater. 2003;98:33–50. doi: 10.1016/S0304-3894(02)00282-0
  • Ozcan A, Oturan MA, Oturan N, et al. Removal of Acid Orange 7 from water by electrochemically generated Fenton's reagent. J Hazard Mater. 2009;163:1213–1220. doi: 10.1016/j.jhazmat.2008.07.088
  • Ozcan A, Sahin Y, Koparal AS, et al. Degradation of picloram by the electro-Fenton process. J Hazard Mater. 2008;153:718–727. doi: 10.1016/j.jhazmat.2007.09.015
  • Hammami S, Oturan N, Bellakhal N, et al. Oxidative degradation of direct orange 61 by electro-Fenton process using a carbon felt electrode: application of the experimental design methodology. J Electroanal Chem. 2007;610:75–84. doi: 10.1016/j.jelechem.2007.07.004
  • Anderson JLC, Alejandro LC. On the degradation pathway of glyphosate and glycine. Environ Sci: Process Impacts. 2018;20(8):1148–1157.
  • Jacob RA. The integrated antioxidant system. Nutr Res. 1995;15:755–766. doi: 10.1016/0271-5317(95)00041-G
  • Rosa Barbosa MP, Lima NS, de Matos DB, et al. Degradation of pesticide mixture by electro-Fenton in filter-press reactor. J Water Process Eng. 2018;25:222–235. doi: 10.1016/j.jwpe.2018.08.008
  • Balci B, Oturan MA, Oturan N, et al. Decontamination of aqueous glyphosate, (aminomethyl) phosphonic acid, and glufosinate solutions by electro-Fenton-like process with Mn2+ as the catalyst. J Agric Food Chem. 2009;57(11):4888–4894. doi: 10.1021/jf900876x
  • Lan H, He W, Wang A, et al. An activated carbon fiber cathode for the degradation of glyphosate in aqueous solutions by the electro-Fenton mode: optimal operational conditions and the deposition of iron on cathode on electrode reusability. Water Res. 2016;105:575–582. doi: 10.1016/j.watres.2016.09.036
  • Sirés I, Guivarch E, Oturan N, et al. Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton’s reagent at carbon-felt cathode. Chemosphere. 2008;72:592–600. doi: 10.1016/j.chemosphere.2008.03.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.