131
Views
2
CrossRef citations to date
0
Altmetric
Articles

The influence of the novel composite material LiNbO3@Fe3O4 on the denitrification efficiency of bacterium Achromobacter sp. A14

, , , , &
Pages 1179-1186 | Received 01 Dec 2018, Accepted 20 Aug 2019, Published online: 06 Sep 2019

References

  • Palma P, Alvarenga P, Palma VL, et al. Assessment of anthropogenic sources of water pollution using multivariate statistical techniques: a case study of the Alqueva’s reservoir, Portugal. Environ Monit Assess. 2010;165:539–552. doi: 10.1007/s10661-009-0965-y
  • Burow KR, Nolan BT, Rupert MG, et al. Nitrate in groundwater of the United States, 1991-2003. Environ Sci Technol. 2010;44:4988–4997. doi: 10.1021/es100546y
  • Matějů V, Čižinská S, Krejčí J, et al. Biological water denitrification – a review. Enzyme Microb Technol. 1992;14:170–183. doi: 10.1016/0141-0229(92)90062-S
  • Ahn SC, Oh S-Y, Cha DK. Enhanced reduction of nitrate by zero-valent iron at elevated temperatures. J Hazard Mater. 2008;156:17–22. doi: 10.1016/j.jhazmat.2007.11.104
  • Li K, Wen G, Li S, et al. Effect of pre-oxidation on low pressure membrane (LPM) for water and wastewater treatment: a review. Chemosphere. 2019;231:287–300. doi: 10.1016/j.chemosphere.2019.05.081
  • Park JY, Yoo YJ. Biological nitrate removal in industrial wastewater treatment: which electron donor we can choose. Appl Microbiol Biotechnol. 2009;82:415–429. doi: 10.1007/s00253-008-1799-1
  • Johnson KL, McCann CM, Wilkinson JL, et al. Dissolved Mn(III) in water treatment works: prevalence and significance. Water Res. 2018;140:181–190. doi: 10.1016/j.watres.2018.04.038
  • Xu D, Xiao E, Xu P, et al. Performance and microbial communities of completely autotrophic denitrification in a bioelectrochemically-assisted constructed wetland system for nitrate removal. Bioresour Technol. 2017;228:39–46. doi: 10.1016/j.biortech.2016.12.065
  • Huang T, Guo L, Zhang H, et al. Nitrogen-removal efficiency of a novel aerobic denitrifying bacterium, Pseudomonas stutzeri strain ZF31, isolated from a drinking-water reservoir. Bioresour Technol. 2015;196:209–216. doi: 10.1016/j.biortech.2015.07.059
  • Yan L, Liu S, Liu Q, et al. Improved performance of simultaneous nitrification and denitrification via nitrite in an oxygen-limited SBR by alternating the DO. Bioresour Technol. 2019;275:153–162. doi: 10.1016/j.biortech.2018.12.054
  • Karanasios KA, Vasiliadou IA, Pavlou S, et al. Hydrogenotrophic denitrification of potable water: a review. J Hazard Mater. 2010;180:20–37. doi: 10.1016/j.jhazmat.2010.04.090
  • Cheng Y, Huang T, Liu C, et al. Effects of dissolved oxygen on the start-up of manganese oxides filter for catalytic oxidative removal of manganese from groundwater. Chem Eng J. 2019;371:88–95. doi: 10.1016/j.cej.2019.03.252
  • Li C, Wang S, Du X, et al. Immobilization of iron- and manganese-oxidizing bacteria with a biofilm-forming bacterium for the effective removal of iron and manganese from groundwater. Bioresour Technol. 2016;220:76–84. doi: 10.1016/j.biortech.2016.08.020
  • Su J, Liang D, Lian T. Comparison of denitrification performance by bacterium Achromobacter sp. A14 under different electron donor conditions. Chem Eng J. 2018;333:320–326. doi: 10.1016/j.cej.2017.09.129
  • Öztürk N, Bektaş TE. Nitrate removal from aqueous solution by adsorption onto various materials. J Hazard Mater. 2004;112:155–162. doi: 10.1016/j.jhazmat.2004.05.001
  • Liu G, You S, Ma M, et al. Removal of nitrate by photocatalytic denitrification using nonlinear optical material. Environ Sci Technol. 2016;50:11218–11225. doi: 10.1021/acs.est.6b03455
  • Bombuwala Dewage N, Liyanage AS, Pittman Jr. CU, et al. Fast nitrate and fluoride adsorption and magnetic separation from water on alpha-Fe2O3 and Fe3O4 dispersed on Douglas fir biochar. Bioresour Technol. 2018;263:258–265. doi: 10.1016/j.biortech.2018.05.001
  • Eaton AD, Clesceri LS, Rice EW, et al. Standard methods for the examination of water and wastewater. 21st ed. Washington (DC): American Public Health Association; 2006.
  • Ratering S, Schnell S. Nitrate-dependent iron(II) oxidation in paddy soil. Environ Microbiol. 2001;3:100–109. doi: 10.1046/j.1462-2920.2001.00163.x
  • Devadas A, Vasudevan S, Epron F. Nitrate reduction in water: influence of the addition of a second metal on the performances of the Pd/CeO2 catalyst. J Hazard Mater. 2011;185:1412–1417. doi: 10.1016/j.jhazmat.2010.10.063
  • Su JF, Zhang YM, Liang DH, et al. Performance and microbial community of an immobilized biofilm reactor (IBR) for Mn(II)-based autotrophic and mixotrophic denitrification. Bioresour Technol. 2019;286:121407. doi: 10.1016/j.biortech.2019.121407
  • Zhang C, Nie S, Liang J, et al. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Sci Total Environ. 2016;557-558:785–790. doi: 10.1016/j.scitotenv.2016.01.170
  • Liu H, Jiang W, Wan D, et al. Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water. J Hazard Mater. 2009;169:23–28. doi: 10.1016/j.jhazmat.2009.03.053
  • Yu R, Shi L, Gu G, et al. The shift of microbial community under the adjustment of initial and processing pH during bioleaching of chalcopyrite concentrate by moderate thermophiles. Bioresour Technol. 2014;162:300–307. doi: 10.1016/j.biortech.2014.03.163
  • Su J, Gao C, Huang T, et al. Characterization and mechanism of the Cd(II) removal by anaerobic denitrification bacterium pseudomonas sp. H117. Chemosphere. 2019;222:970–979. doi: 10.1016/j.chemosphere.2019.01.192
  • Zhou W, Sun Y, Wu B, et al. Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone. J Environ Sci. 2011;23:1761–1769. doi: 10.1016/S1001-0742(10)60635-3
  • Wang H-Y, Yang K, Zhang Q, et al. Nitrate removal by a strain of nitrate-dependent Fe (II) -oxidizing bacteria. Environ Sci. 2014;35:1437–1442.
  • Margesin R. Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles. 2009;13:257–262. doi: 10.1007/s00792-008-0213-3
  • Corey P, Kim JK, Garbary DJ, et al. Bioremediation potential of Chondrus crispus (basin head) and palmaria palmata: effect of temperature and high nitrate on nutrient removal. J Appl Phycol. 2012;24:441–448. doi: 10.1007/s10811-011-9734-8
  • Pierre S, Hewson I, Sparks JP, et al. Ammonia oxidizer populations vary with nitrogen cycling across a tropical montane mean annual temperature gradient. Ecology. 2017;98:1896–1907. doi: 10.1002/ecy.1863
  • Kelly RT, Henriques ID, Love NG. Chemical inhibition of nitrification in activated sludge. Biotechnol Bioeng. 2004;85:683–694. doi: 10.1002/bit.20015
  • Ren Y-X, Yang L, Liang X. The characteristics of a novel heterotrophic nitrifying and aerobic denitrifying bacterium, Acinetobacter junii YB. Bioresour Technol. 2014;171:1–9. doi: 10.1016/j.biortech.2014.08.058
  • Isaka K, Date Y, Kimura Y, et al. Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures. FEMS Microbiol Lett. 2008;282:32–38. doi: 10.1111/j.1574-6968.2008.01095.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.