433
Views
16
CrossRef citations to date
0
Altmetric
Articles

Simultaneous nitrification and denitrification in the bio-cathode of a multi-anode microbial fuel cell

, , &
Pages 1260-1270 | Received 19 May 2019, Accepted 29 Aug 2019, Published online: 20 Sep 2019

References

  • Davis JB, Yarbrough HF. Preliminary experiments on a microbial fuel cell. Science. 1962;137:615–616. doi: 10.1126/science.137.3530.615
  • Bond DR, Lovley DR. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol. 2003;69:1548. doi: 10.1128/AEM.69.3.1548-1555.2003
  • Peter C, Korneel R, Peter A, et al. Biological denitrification in microbial fuel cells. Environ Sci Technol. 2007;41:3354–3360. doi: 10.1021/es061687b
  • Sebastià P, Marc S, Ariadna VS, et al. Autotrophic nitrite removal in the cathode of microbial fuel cells. Bioresour Technol. 2011;102:4462–4467. doi: 10.1016/j.biortech.2010.12.100
  • Bernardino V, Korneel R, Zhiguo Y, et al. Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res. 2008;42:3013–3024. doi: 10.1016/j.watres.2008.03.017
  • Virdis B, Rabaey K, Rozendal RA, et al. Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Res. 2010;44:2970–2980. doi: 10.1016/j.watres.2010.02.022
  • Kelly PT, He Z. Nutrients removal and recovery in bioelectrochemical systems: A review. Bioresour Technol. 2014;153:351–360. doi: 10.1016/j.biortech.2013.12.046
  • Guo F, Fu G, Zhang Z. Performance of mixed-species biocathode microbial fuel cells using saline mustard tuber wastewater as self-buffered catholyte. Bioresour Technol. 2015;180:137–143. doi: 10.1016/j.biortech.2014.11.113
  • Zhu G, Chen G, Ran Y, et al. Enhanced simultaneous nitrification/denitrification in the biocathode of a microbial fuel cell fed with cyanobacteria solution. Process Biochem. 2016;51:80–88. doi: 10.1016/j.procbio.2015.11.004
  • Peter A, Korneel R, The PH, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol. 2006;40:3388–3394. doi: 10.1021/es0525511
  • Kim JR, Rodríguez J, Hawkes FR, et al. Increasing power recovery and organic removal efficiency using extended longitudinal tubular microbial fuel cell (MFC) reactors. Energ Environ Sci. 2011;4:459–465. doi: 10.1039/C0EE00073F
  • Jiang D, Xiang L, Raymond D, et al. Power recovery with multi-anode/cathode microbial fuel cells suitable for future large-scale applications. Int J Hydrogen Energ. 2010;35:8683–8689. doi: 10.1016/j.ijhydene.2010.04.136
  • Al-Mamun A, Baawain MS, Egger F, et al. Optimization of a baffled-reactor microbial fuel cell using autotrophic denitrifying bio-cathode for removing nitrogen and recovering electrical energy. Biochem Eng J. 2017;120:93–102. doi: 10.1016/j.bej.2016.12.015
  • Wu Y, Yang Q, Zeng Q, et al. Enhanced low COD/N nitrogen removal in an innovative microbial fuel cell (MFC) with electroconductivity aerated membrane (EAM) as biocathode. Chem Eng J. 2017;316:315–322. doi: 10.1016/j.cej.2016.11.141
  • Lu H, Oehmen A, Virdis B, et al. Obtaining highly enriched cultures of Candidatus accumulibacter phosphatis through alternating carbon sources. Water Res. 2006;40(20):3840–3848. doi: 10.1016/j.watres.2006.09.004
  • Logan BE, Bert H, René R, et al. Microbial fuel cells: methodology and technology. Environ Sci Technol. 2006;40:5181–5192. doi: 10.1021/es0605016
  • Haishu S, Guoqiang Z, Xuliang Z. Performance and recent improvement in microbial fuel cells for simultaneous carbon and nitrogen removal: a review. J Environ Sci. 2016;39:242–248. doi: 10.1016/j.jes.2015.12.006
  • Chaudhuri SK, Lovley DR. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol. 2003;21:1229–1232. doi: 10.1038/nbt867
  • Clauwaert P, Desloover J, Shea C, et al. Enhanced nitrogen removal in bio-electrochemical systems by pH control. Biotechnol Lett. 2009;31(10):1537–1543. doi: 10.1007/s10529-009-0048-8
  • Xu F, Ouyang DL, Rene ER, et al. Electricity production enhancement in a constructed wetland-microbial fuel cell system for treating saline wastewater. Bioresour Technol. 2019;288:121462. doi: 10.1016/j.biortech.2019.121462
  • Peter C, David VDH, Nico B, et al. Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol. 2007;41(21):7564–7569. doi: 10.1021/es0709831
  • Freguia S, Rabaey K, Yuan Z, et al. Sequential anode–cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res. 2008;42:1387–1396. doi: 10.1016/j.watres.2007.10.007
  • Jia YH, Tran HT, Kim DH, et al. Simultaneous organics removal and bio-electrochemical denitrification in microbial fuel cells. Bioproc Biosyst Eng. 2008;31:315–321. doi: 10.1007/s00449-007-0164-6
  • Cai J, Zheng PZ, Zhang J, et al. Simultaneous anaerobic sulfide and nitrate removal coupled with electricity generation in microbial fuel cell. Bioresour Technol. 2019;129:224–228. doi: 10.1016/j.biortech.2012.11.008
  • Zhang S, Bao R, Lu J, et al. Simultaneous sulfide removal, nitrification, denitrification and electricity generation in three-chamber microbial fuel cells. Sep Purif Technol. 2018;195:314–321. doi: 10.1016/j.seppur.2017.12.027
  • Peng L, Ling Z, Xia H, et al. Biocathode denitrification in a two-columnar microbial fuel cell. Environ Sci. 2010;31:1932.
  • Zeng Q. Study on denitrification of microbial fuel cell using membrane aerated biofilm reactor as cathode. Tianjin Polytechnic University; 2016.
  • Beschkov V, Velizarov S, Agathos SN, et al. Bacterial denitrification of waste water stimulated by constant electric field. Biochem Eng J. 2004;17:141–145. doi: 10.1016/S1369-703X(03)00149-9
  • Kim JR, Zuo Y, Regan JM, et al. Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnol Bioeng. 2010;99:1120–1127. doi: 10.1002/bit.21687
  • Zhao J, Wu J, Li X, et al. The denitrification characteristics and microbial community in the cathode of an MFC with aerobic denitrification at high temperatures. Front Microbiol. 2017;8. doi: 10.3389/fmicb.2017.00009
  • Borole AP, Hamilton CY, Vishnivetskaya T, et al. Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in flow-through systems ⋆. Biochem Eng J. 2009;48:71–80. doi: 10.1016/j.bej.2009.08.008
  • Auguet O, Pijuan M, Guasch-Balcells H, et al. Implications of downstream nitrate dosage in anaerobic sewers to control sulfide and methane emissions. Water Res. 2015;68:522–532. doi: 10.1016/j.watres.2014.09.034
  • Zhe-Xue Q, Sung-Keun R, Jian-E Z, et al. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol. 2010;10:3130–3139.
  • Jo SJ, Kwon H, Jeong S-Y, et al. Comparison of microbial communities of activated sludge and membrane biofilm in 10 full-scale membrane bioreactors. Water Res. 2016;101:214–225. doi: 10.1016/j.watres.2016.05.042
  • Jian H, Zhiwei W, Chaowei Z, et al. Identification of microbial communities in open and closed circuit bioelectrochemical MBRs by high-throughput 454 pyrosequencing. Plos One. 2014;9(4):e93842. doi: 10.1371/journal.pone.0094763
  • Purkhold U, Pommereningröser A, Juretschko S, et al. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol. 2000;66(12):5368–5382. doi: 10.1128/AEM.66.12.5368-5382.2000
  • Banciu HL, Sorokin DY, Tourova TP, et al. Influence of salts and pH on growth and activity of a novel facultatively alkaliphilic, extremely salt-tolerant, obligately chemolithoautotrophic sufur-oxidizing Gammaproteobacterium Thioalkalibacter halophilus gen. nov., sp. nov. from South-Western Siberi. Extremophiles. 2008;12:391–404. doi: 10.1007/s00792-008-0142-1
  • Sorokin DY, Tourova TP, Kolganova TV, et al. Thioalkalispira microaerophila gen. nov., sp nov., a novel lithoautotrophic, sulfur-oxidizing bacterium from a soda lake. Int J Syst Evol Microbiol. 2002;52:2175–2182.
  • Shao MF, Zhang T, Fang HP. Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Appl Microbiol Biotechnol. 2010;88(5):1027–1042. doi: 10.1007/s00253-010-2847-1
  • Okamoto H, Kawamura K, Nishiyama T, et al. Development of a fixed-bed anammox reactor with high treatment potential. Biodegradation. 2013;24:99–110. doi: 10.1007/s10532-012-9561-x
  • Zhao H, Zhao J, Li F, et al. Performance of denitrifying microbial fuel cell with biocathode over nitrite. Front Microbiol. 2016;7. doi: 10.3389/fmicb.2016.00344
  • Chèneby D, Philippot L, Hartmann A, et al. 16S rDNA analysis for characterization of denitrifying bacteria isolated from three agricultural soils. Fems Microbiol Ecol. 2000;34:121–128. doi: 10.1016/S0168-6496(00)00080-5
  • Schipper LA, Vojvodić-Vuković M. Five years of nitrate removal, denitrification and carbon dynamics in a denitrification wall. Water Res. 2001;35:3473–3477. doi: 10.1016/S0043-1354(01)00052-5
  • Ivanova N, Rohde C, Munk C, et al. Complete genome sequence of Truepera radiovictrix type strain (RQ-24 T). Stand Genomic Sci. 2011;4:91–99. doi: 10.4056/sigs.1563919
  • Seunghee Y, Hangyeon W, Anandham R, et al. Dokdonella soli sp. nov., a gammaproteobacterium isolated from soil. Int J Syst Evol Microbiol. 2009;59:1965–1968. doi: 10.1099/ijs.0.005348-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.