167
Views
3
CrossRef citations to date
0
Altmetric
Articles

Efficiencies of available organic mixtures for the biological treatment of highly acidic-sulphate rich drainage of the San Jose mine, Bolivia

ORCID Icon, &
Pages 1283-1291 | Received 21 Jan 2019, Accepted 30 Aug 2019, Published online: 13 Sep 2019

References

  • Vandecasteele C. Generation of mine water, its impact on the aquatic environment and remediation. International Congress on Development, Environment and Natural Resources: Multi-Level and Multi-Scale Sustainability; 2007 Jul 11–13; Cochabamba (Bolivia).
  • Plante B, Bussière B, Benzaazoua M. Lab to field scale effects on contaminated neutral drainage prediction from the Tio mine waste rocks. J Geochemical Explor. 2014;137:37–47. doi: 10.1016/j.gexplo.2013.11.004
  • Anawar HM. Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge. J Environ Manage. 2015;158:111–121. doi: 10.1016/j.jenvman.2015.04.045
  • Johnson DB, Hallberg KB. Acid mine drainage remediation options: a review. Sci Total Environ. 2005;338: 3–14. doi: 10.1016/j.scitotenv.2004.09.002
  • Oporto C, Smolders E, Vandecasteele C. Identifying the cause of soil cadmium contamination with Monte Carlo mass balance modelling: a case study in Potosi (Bolivia). Environ Technol. 2012;33(5):555–561. doi: 10.1080/09593330.2011.586054
  • United Nations. Resolution adopted by the general assembly. New York (NY, USA); 2015.
  • Kefeni KK, Msagati TAM, Mamba BB. Acid mine drainage: Prevention, treatment options, and resource recovery: a review. J Clean Prod. 2017;151:475–493. doi: 10.1016/j.jclepro.2017.03.082
  • Clyde E, Champagne P, Jamieson H, et al. The use of a passive treatment system for the mitigation of acid mine drainage at the Williams Brothers mine (California): pilot-scale study. J Clean Prod. 2016; 130:116–125. doi: 10.1016/j.jclepro.2016.03.145
  • Zhang M, Wang H. Organic wastes as carbon sources to promote sulfate reducing bacterial activity for biological remediation of acid mine drainage. Miner Eng. 2014;69: 81–90. doi: 10.1016/j.mineng.2014.07.010
  • Neculita CM, Zagury GJ, Bussière B. Passive treatment of acid mine drainage in bioreactors using sulfate–reducing bacteria: critical review and research needs. J Environ Qual. 2007;36 (1): 1–16. doi: 10.2134/jeq2006.0066
  • Waybrant KR, Blowes DW, Ptacek JP. Selection of reactive mixtures for use in permeable reactive walls for treatment of mine drainage. Environ Sci Technol. 1998;32:1972–1979. doi: 10.1021/es9703335
  • Cocos IA, Zagury GJ, Clement, B, et al. Multiple factor design for reactive mixture selection for use in reactive walls in acid mine drainage treatment. Water Res. 2012;36,167–177. doi: 10.1016/S0043-1354(01)00238-X
  • Gibert O, de Pablo J, Cortina J, et al. Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage. Water Res. 2004;38:4186–4196. doi: 10.1016/j.watres.2004.06.023
  • Zagury GJ, Kulnieks VI, Neculita CM. Characterization and reactivity assessment of organic substrates for sulphate–reducing bacteria in acid mine drainage treatment. Chemosphere. 2006;64:944–954. doi: 10.1016/j.chemosphere.2006.01.001
  • Neculita CM, Yim GJ, Lee SW, et al. Comparative effectiveness of mixed organic substrates to mushroom compost for treatment of mine drainage in passive bioreactors. Chemosphere. 2011;83:76–82. doi: 10.1016/j.chemosphere.2010.11.082
  • United Nations. Framework convention on climate change. What are the technology needs of developing countries? 2014. Available from: http://unfccc.int/ttclear/misc_/StaticFiles/gnwoerk_static/events_SE-TEC-CTCN-SB40/ff5136555fad41e98395f0d07c5ab52b/8863da03790c47608f4827ee8f68ba18.pdf.
  • Gibert O, de Pablo J, Cortina J, et al. Evaluation of a sheep manure/limestone mixture for biological in–situ acid mine drainage treatment: potential applications for permeable reactive barriers. J Chem Technol Biotechnol. 2008;6:161–180.
  • Gibert O, de Pablo J, Cortina J, et al. Evaluation of municipal compost/limestone/iron mixtures as filling material for permeable reactive barriers for in–situ acid mine drainage treatment. J Chem Technol Biotechnol. 2003;78:489–496. doi: 10.1002/jctb.814
  • Amos PW, Younger PL. Substrate characterization for a subsurface reactive barrier to treat colliery spoil leachate. Water Res. 2003;37:108–120. doi: 10.1016/S0043-1354(02)00159-8
  • Hao T, Xiang, P, Mackey HR et al. A review of biological sulfate conversions in wastewater treatment. Water Res. 2014;65,1–21. doi: 10.1016/j.watres.2014.06.043
  • Glombitza F. Treatment of acid lignite mine flooding water by means of microbial sulfate reduction. Waste Manage. 2001;21:197–203. doi: 10.1016/S0956-053X(00)00061-1
  • Pastor M, Pastor A, Torró AL, et al. The San José-Itos Mines, Oruro, Bolivia: structure and Ag-Sn mineralization. SGA Biennial Meeting; 2015 Aug 13; Nancy (France).
  • Instituto Nacional de Estadística (Bolivia). Censo Agropecuario; 2015. Available from: https://www.ine.gob.bo/index.php/prensa/publicaciones/121-publicaciones/libros-publicaciones-y-estudios/294-memoria-ine-2016.
  • American Society of Agricultural Engineers. ASAE standards. Manure production and characteristics; 2005. D384.2. Available from: http://www.agronext.iastate.edu/immag/pubs/manure-prod-char-d384-2.pdf.
  • Kandah M. Zinc adsorption from aqueous solutions using disposal sheep manure waste (SMW). Chem Eng J. 2001;84: 543–549. doi: 10.1016/S1385-8947(01)00138-3
  • Nelson DW, Sommers LE. Total carbon, organic carbon, and organic matter. In: Sparks DL, Page AL, Helmke PA, editors. Methods of soil analysis (part 3): chemical methods. Madison (Wisconsin): SSSA Book Series; 1996. p. 961–1010.
  • APHA. Standard methods for the examination of water and wastewater. 19th ed. Washington (DC): American Public Health Association/American Water Works Association/Water Environment Federation; 1998.
  • Bernardez LA, de Andrade Lima LRP, de Jesus EB, et al. A kinetic study on bacterial sulfate reduction. Bioprocess Biosyst Eng. 2012;36(12):1861–1869. doi: 10.1007/s00449-013-0960-0
  • Prasad D, Wai M, Berube P, et al. Evaluating substrates in the biological treatment of acid mine drainage. Environ Technol. 1999;20:449–459 doi: 10.1080/09593332008616840
  • Okabe S, Nielsen PH, Characklis WG. Factors affecting microbial sulfate reduction by Desulfovibrio desulfuricans in continuous culture: limiting nutrients and sulfide concentration. Biotechnol Bioeng. 1992;40:725–734. doi: 10.1002/bit.260400612
  • Choudhary RP. Correlation between chemical characterization and treatment efficiencies of complex organic carbon as single substrate in treating acid mine drainage. Int J Adv Agric Environ Eng. 2016;3(2):362–366.
  • Neculita CM, Zagury GJ. Biological treatment of highly contaminated acid mine drainage in batch reactors: long term treatment and reactive mixture characterization. J Hazard Mater. 2008;157:358–366. doi: 10.1016/j.jhazmat.2008.01.002
  • Coûteaux MM, Hervé D, Beck S. Descomposición de hojarasca y raíces en un sistema de descanso largo (Altiplano de Bolivia) [Decomposition of plant litter and roots in a long fallow system (Bolivian Altiplano)]. Ecology in Bolivia. 2006;41(3):85–102.
  • Tang K, Baskaran V, Nemati M. Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J. 2009;44:73–94. doi: 10.1016/j.bej.2008.12.011
  • Cohen RRH. Use of microbes for cost reduction of metal removal from metals and mining industry waste streams. J Clean Prod. 2006;14:1146–1157. doi: 10.1016/j.jclepro.2004.10.009
  • Abu Al-Rub F, Kandah M, Al-Dabaybeh N. Competitive adsorption of nickel and cadmium on sheep manure wastes; experimental and prediction studies. Sep Sci Technol. 2003;38(2):483–497. doi: 10.1081/SS-120016586
  • Abu Al-Rub F, Kandah M, Aldabaibeh N. Nickel removal from aqueous solutions using sheep manure wastes. Eng Life Sci. 2002; 2:111–116. doi: 10.1002/1618-2863(200204)2:4<111::AID-ELSC111>3.0.CO;2-Q
  • Swinnen IA, Bernaerts K, Dens EJ, et al. Predictive modelling of the microbial lag phase: a review. Int J Food Microbiol. 2004;94(2):137–159. doi: 10.1016/j.ijfoodmicro.2004.01.006
  • Utgikar VP, Tabak HH, Haines JR, et al. Quantification of toxic inhibitory impact of copper and zinc on mixed cultures of sulfate-reducing bacteria. Biotechnol Bioeng. 2003;82: 306 –312. doi: 10.1002/bit.10575
  • Herlihy AT, Mills AL. Sulfate reduction in freshwater sediments receiving acid mine drainage. Appl Environ Microbiol. 1985;49(1):179–186.
  • Gusek J. Scaling up design challenges for large scale sulfate reducing bioreactors. Proceedings of the 21th National Meeting of the American Society of Mining and Reclamation and the 25th West Virginia Surface Mine Drainage Task Force symposium; 2004 Apr 18–24, Morgantown (WV), p. 752–765.
  • Ness I, Janin A, Stewart K. Passive treatment of mine impacted water in cold climates: a review. Yukon Research Centre, Yukon College. Printed in Whitehorse, Yukon, 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.