356
Views
6
CrossRef citations to date
0
Altmetric
Articles

Iron powder activated peroxymonosulfate combined with waste straw to improve sludge dewaterability

, ORCID Icon, &
Pages 1302-1311 | Received 10 Jun 2019, Accepted 31 Aug 2019, Published online: 17 Sep 2019

References

  • Raheem A, Sikarwar VS, He J, et al. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: a review. Chem Eng J. 2018;337:616–641. doi: 10.1016/j.cej.2017.12.149
  • Liu H, Yang S, Shi J, et al. Towards understanding the dewatering mechanism of sewage sludge improved by bioleaching processing. Sep Purif Technol. 2016;165:53–59. doi: 10.1016/j.seppur.2016.03.037
  • MacDonald BA, Oakes KD, Adams M. Molecular disruption through acid injection into waste activated sludge – a feasibility study to improve the economics of sludge dewatering. J Clean Prod. 2018;176:966–975. doi: 10.1016/j.jclepro.2017.12.014
  • Li H, Jin Y, Nie Y. Application of alkaline treatment for sludge decrement and humic acid recovery. Bioresour Technol. 2009;100:6278–6283. doi: 10.1016/j.biortech.2009.07.022
  • Zhu C, Zhang P, Wang H, et al. Conditioning of sewage sludge via combined ultrasonication-flocculation-skeleton building to improve sludge dewaterability. Ultrason Sonochem. 2018;40:353–360. doi: 10.1016/j.ultsonch.2017.07.028
  • Li H, Wang Y, Zheng H. Variations of moisture and organics in activated sludge during Fe(0)/S2O8(2-) conditioning-horizontal electro-dewatering process. Water Res. 2018;129:83–93. doi: 10.1016/j.watres.2017.11.006
  • Li Y, Yuan X, Wu Z, et al. Enhancing the sludge dewaterability by electrolysis/electrocoagulation combined with zero-valent iron activated persulfate process. Chem Eng J. 2016;303:636–645. doi: 10.1016/j.cej.2016.06.041
  • Jiang W, Tang P, Lu S, et al. Comparative studies of H2O2 /Fe(II)/formic acid, sodium percarbonate/Fe(II)/formic acid and calcium peroxide/Fe(II)/formic acid processes for degradation performance of carbon tetrachloride. Chem Eng J. 2018;344:453–461. doi: 10.1016/j.cej.2018.03.092
  • Neyens E, Baeyens J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater. 2003;98:33–50. doi: 10.1016/S0304-3894(02)00282-0
  • Song K, Zhou X, Liu Y, et al. Improving dewaterability of anaerobically digested sludge by combination of persulfate and zero valent iron. Chem Eng J. 2016;295:436–442. doi: 10.1016/j.cej.2016.03.064
  • Bilgin Oncu N, Mercan N, Akmehmet Balcioglu I. The impact of ferrous iron/heat-activated persulfate treatment on waste sewage sludge constituents and sorbed antimicrobial micropollutants. Chem Eng J. 2015;259:972–980. doi: 10.1016/j.cej.2014.08.066
  • Delavaran Shiraz A, Takdastan A, Borghei SM. Photo-Fenton like degradation of catechol using persulfate activated by UV and ferrous ions: Influencing operational parameters and feasibility studies. J Mol Liq. 2018;249:463–469. doi: 10.1016/j.molliq.2017.11.045
  • Xiao R, Luo Z, Wei Z, et al. Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies. Curr Opin Chem Eng. 2018;19:51–58. doi: 10.1016/j.coche.2017.12.005
  • Li Y, Pan L, Zhu Y, et al. How does zero valent iron activating peroxydisulfate improve the dewatering of anaerobically digested sludge? Water Res. 2019;163:114912. doi: 10.1016/j.watres.2019.114912
  • Li Y, Yuan X, Wang D, et al. Recyclable zero-valent iron activating peroxymonosulfate synchronously combined with thermal treatment enhances sludge dewaterability by altering physicochemical and biological properties. Bioresour Technol. 2018;262:294–301. doi: 10.1016/j.biortech.2018.04.050
  • Zhen G, Lu X, Wang B, et al. Synergetic pretreatment of waste activated sludge by Fe(II)-activated persulfate oxidation under mild temperature for enhanced dewaterability. Bioresour Technol. 2012;124:29–36. doi: 10.1016/j.biortech.2012.08.039
  • Shi Y, Yang J, Liang S, et al. Principal component analysis on sewage sludge characteristics and its implication to dewatering performance with Fe2+/persulfate-skeleton builder conditioning. Int J Environ Sci Technol. 2016;13:2283–2292. doi: 10.1007/s13762-016-1064-6
  • Yadav M, Gupta R, Sharma RK. Green and sustainable pathways for wastewater purification. Adv Water Purif Tech. 2019: 355–383. doi: 10.1016/B978-0-12-814790-0.00014-4
  • Graca CAL, Fugita LTN, de Velosa AC, et al. Amicarbazone degradation promoted by ZVI-activated persulfate: study of relevant variables for practical application. Environ Sci Pollut Res. 2018;25:5474–5483. doi: 10.1007/s11356-017-0862-9
  • Rastogi A, Al-Abed SR, Dionysiou DD. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols. Water Res. 2009;43:684–694. doi: 10.1016/j.watres.2008.10.045
  • Zhong S, Yin G, Peng H, et al. Preparation, characterization and sludge conditioning performance of modified coal fly ash. J Taiwan Inst Chem Eng. 2017;78:447–454. doi: 10.1016/j.jtice.2017.05.020
  • Zhang H, Yang J, Yu W, et al. Mechanism of red mud combined with Fenton's reagent in sewage sludge conditioning. Water Res. 2014;59:239–247. doi: 10.1016/j.watres.2014.04.026
  • Cao B, Wang R, Zhang W, et al. Carbon-based materials reinforced waste activated sludge electro-dewatering for synchronous fuel treatment. Water Res. 2019;149:533–542. doi: 10.1016/j.watres.2018.10.082
  • Wang S, Yang YK, Chen XG, et al. Effects of bamboo powder and rice husk powder conditioners on sludge dewatering and filtrate quality. Int Biodeterior Biodegradation. 2017;124:288–296. doi: 10.1016/j.ibiod.2017.05.013
  • Lin Y-F, Jing S-R, Lee D-Y. Enhancing the dewaterability and amenability of sludge for subsequent stabilization processes by using organic waste solids as conditioners. J Environ Sci Health A. 2001;36:191–202. doi: 10.1081/ESE-100102617
  • Ye S, Zeng G, Wu H, et al. The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil. Resour Conserv Recycl. 2019;140:278–285. doi: 10.1016/j.resconrec.2018.10.004
  • Ye S, Zeng G, Wu H, et al. Co-occurrence and interactions of pollutants, and their impacts on soil remediation—a review. Crit Rev Environ Sci Technol. 2017;47:1528–1553. doi: 10.1080/10643389.2017.1386951
  • Ye S, Yan M, Tan X, et al. Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light. Appl Catal B Environ. 2019;250:78–88. doi: 10.1016/j.apcatb.2019.03.004
  • Ye S, Zeng G, Wu H, et al. Biological technologies for the remediation of co-contaminated soil. Crit Rev Biotechnol. 2017;37:1062–1076. doi: 10.1080/07388551.2017.1304357
  • Li H, Song L, Han B, et al. Improved sludge dewaterability using persulfate activated by humic acid supported nanoscale zero-valent iron: effect on sludge characteristics and reaction mechanisms. Environ Sci: Water Res Technol. 2018;4:1480–1488.
  • Thipkhunthod P, Meeyoo V, Rangsunvigit P, et al. Predicting the heating value of sewage sludges in Thailand from proximate and ultimate analyses. Fuel. 2005;84:849–857. doi: 10.1016/j.fuel.2005.01.003
  • APHA. Standard methods for the examination of water and wastewater. 21th ed. Washington: American Public Health Association; 2005.
  • Wu Y, Zhang P, Zeng G, et al. Combined sludge conditioning of micro-disintegration, floc reconstruction and skeleton building (KMnO 4 /FeCl 3 /Biochar) for enhancement of waste activated sludge dewaterability. J Taiwan Inst Chem Eng. 2017;74:121–128. doi: 10.1016/j.jtice.2017.02.004
  • Zhou X, Jin W, Chen H, et al. Enhancing dewaterability of waste activated sludge by combined oxidative conditioning process with zero-valent iron and peroxymonosulfate. Water Sci Technol. 2017;76:2427–2433. doi: 10.2166/wst.2017.408
  • Qi Y, Thapa KB, Hoadley AFA. Application of filtration aids for improving sludge dewatering properties – a review. Chem Eng J. 2011;171:373–384. doi: 10.1016/j.cej.2011.04.060
  • Guo S, Qu F, Ding A, et al. Effects of agricultural waste-based conditioner on ultrasonic-aided activated sludge dewatering. RSC Adv. 2015;5:43065–43073. doi: 10.1039/C5RA05743D
  • Wang HF, Hu H, Wang HJ, et al. Impact of dosing order of the coagulant and flocculant on sludge dewatering performance during the conditioning process. Sci Total Environ. 2018;643:1065–1073. doi: 10.1016/j.scitotenv.2018.06.161
  • Wei L, Ding J, Xue M, et al. Adsorption mechanism of ZnO and CuO nanoparticles on two typical sludge EPS: effect of nanoparticle diameter and fractional EPS polarity on binding. Chemosphere. 2019;214:210–219. doi: 10.1016/j.chemosphere.2018.09.093
  • Zhu X, Yang Q, Li X, et al. Enhanced dewaterability of waste activated sludge with Fe(II)-activated hypochlorite treatment. Environ Sci Pollut Res. 2018;25:27628–27638. doi: 10.1007/s11356-018-2829-x
  • Liu H, Xiao H, Fu B, et al. Feasibility of sludge deep-dewatering with sawdust conditioning for incineration disposal without energy input. Chem Eng J. 2017;313:655–662. doi: 10.1016/j.cej.2016.09.107
  • Nouha K, Kumar RS, Balasubramanian S, et al. Critical review of EPS production, synthesis and composition for sludge flocculation. J Environ Sci. 2018;66:225–245. doi: 10.1016/j.jes.2017.05.020
  • Liu J, Yang Q, Wang D, et al. Enhanced dewaterability of waste activated sludge by Fe(II)-activated peroxymonosulfate oxidation. Bioresour Technol. 2016;206:134–140. doi: 10.1016/j.biortech.2016.01.088
  • Chen Z, Zhang W, Wang D, et al. Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical re-flocculation. Water Res. 2016;103:170–181. doi: 10.1016/j.watres.2016.07.018
  • Jacquin C, Lesage G, Traber J, et al. Three-dimensional excitation and emission matrix fluorescence (3DEEM) for quick and pseudo-quantitative determination of protein- and humic-like substances in full-scale membrane bioreactor (MBR). Water Res. 2017;118:82–92. doi: 10.1016/j.watres.2017.04.009
  • Guo S, Liang H, Bai L, et al. Synergistic effects of wheat straw powder and persulfate/Fe(II) on enhancing sludge dewaterability. Chemosphere. 2019;215:333–341. doi: 10.1016/j.chemosphere.2018.10.008
  • Zhang X, Kang H, Zhang Q, et al. The porous structure effects of skeleton builders in sustainable sludge dewatering process. J Environ Manage. 2019;230:14–20. doi: 10.1016/j.jenvman.2018.09.049
  • Ghouleh Z, Shao Y. Turning municipal solid waste incineration into a cleaner cement production. J Clean Prod. 2018;195:268–279. doi: 10.1016/j.jclepro.2018.05.209
  • Shi Y, Yang J, Yu W, et al. Synergetic conditioning of sewage sludge via Fe2+/persulfate and skeleton builder: effect on sludge characteristics and dewaterability. Chem Eng J. 2015;270:572–581. doi: 10.1016/j.cej.2015.01.122
  • Akmehmet Balcioglu I, Bilgin Oncu N, Mercan N. Beneficial effects of treating waste secondary sludge with thermally activated persulfate. J Chem Technol Biotechnol. 2017;92(6):1192–1202. doi: 10.1002/jctb.5108

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.