266
Views
8
CrossRef citations to date
0
Altmetric
Articles

Improvement of ethanol production using green alga Chlorococcum minutum

, , , , , , & show all
Pages 1383-1391 | Received 15 Dec 2018, Accepted 10 Sep 2019, Published online: 02 Oct 2019

References

  • Balat H. Prospects of biofuels for a sustainable energy future: a critical assessment. Energy Educ Sci Technol. 2009;24:85–111.
  • Gray KA, Zhao L, Emptage M. Bioethanol. Curr Opin Chem Biol. 2006;10:141–146. doi: 10.1016/j.cbpa.2006.02.035
  • Kim KH, Choi IS, Kim HM, et al. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Bioresour Technol. 2014;153:47–54. doi: 10.1016/j.biortech.2013.11.059
  • Hernández D, Riaño B, Coca M, et al. Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J. 2015;262:939–945. doi: 10.1016/j.cej.2014.10.049
  • Kim S, Dale BE. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy. 2004;26:361–375. doi: 10.1016/j.biombioe.2003.08.002
  • Mussatto SI, Dragone G, Guimarães PM, et al. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv. 2010;28:817–830. doi: 10.1016/j.biotechadv.2010.07.001
  • Miranda JR, Passarinho PC, Gouveia L. Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour Technol. 2012;104:342–348. doi: 10.1016/j.biortech.2011.10.059
  • Harun R, Jason WSY, Cherrington T, et al. Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy. 2011;88(10):3464–3467. doi: 10.1016/j.apenergy.2010.10.048
  • Prasad S, Singh A, Joshi HC. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recy. 2007;50:1–39. doi: 10.1016/j.resconrec.2006.05.007
  • Sanchez OJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol. 2008;99:5270–5295. doi: 10.1016/j.biortech.2007.11.013
  • De Farias Silva CE, Bertucco A. Bioethanol from microalgae and cyanobacteria: a review and technological outlook. Process Biochem. 2016;51(11):1833–1842. doi: 10.1016/j.procbio.2016.02.016
  • Paramesh K, Reddy NL, Shankar MV, et al. Enhancement of biological hydrogen production using green alga Chlorococcum minutum. Int J Hydrogen Energy. 2018;43:3957–3966. doi: 10.1016/j.ijhydene.2017.09.005
  • Gfeller RP, Gibbs M. Fermentative metabolism of Chlamydomonas reinhardtii: I analysis of fermentative products from starch in dark and light. Plant Physiol. 1984;75:212–218. doi: 10.1104/pp.75.1.212
  • Hirano A, Ueda R, Hirayama S, et al. CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy. 1997;22:137–142. doi: 10.1016/S0360-5442(96)00123-5
  • Choi SP, Nguyen MT, Sim SJ. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol. 2010;101(14):5330–5336. doi: 10.1016/j.biortech.2010.02.026
  • Scranton MA, Ostrand JT, Fields FJ, et al. Chlamydomonas as a model for biofuels and bio-products production. Plant J. 2015; 82(3):523–531. doi: 10.1111/tpj.12780
  • Tandon P, Jin Q, Huang L. A promising approach to enhance microalgae productivity by exogenous supply of vitamins. Microb Cell Factor. 2017;16:219. doi: 10.1186/s12934-017-0834-2
  • Gifuni I, Olivieri G, Pollio A, et al. Autotrophic starch production by Chlamydomonas species. J Appl Phycol. 2017;29(1):105–114. doi: 10.1007/s10811-016-0932-2
  • Daroch M, Geng S, Wang G. Recent advances in liquid biofuel production from algal feedstocks. Appl Energy. 2013;102:1371–1381. doi: 10.1016/j.apenergy.2012.07.031
  • Procházková G, Brányiková I, Zachleder V, et al. Effect of nutrient supply status on biomass composition of eukaryotic green microalgae. J Appl Phycol. 2014;26(3):1359–1377. doi: 10.1007/s10811-013-0154-9
  • Croft MT, Warren MJ, Smith AG. Algae need their vitamins. Eukaryot Cell. 2006;5:1175–1183. doi: 10.1128/EC.00097-06
  • Hansoz AD, Amthor JS, Sun J, et al. Redesigning thiamin synthesis: prospects and potential payoff. Plant Sci. 2018;273:92–99. doi: 10.1016/j.plantsci.2018.01.019
  • Ruangsomboon S, Sornchai P, Prachom N. Enhanced hydrocarbon production and improved biodiesel qualities of Botryococcus braunii KMITL 5 by vitamins thiamine, biotin and cobalamin supplementation. Algal Res. 2018;29:159–169. doi: 10.1016/j.algal.2017.11.028
  • Grossman A. Nutrient acquisition: the generation of bioactive vitamin B12 by microalgae. Curr Biol. 2016;26:319–321. doi: 10.1016/j.cub.2016.02.047
  • Arnon D. Estimation of total chlorophyll. Plant Physiol. 1949;24:1–15. doi: 10.1104/pp.24.1.1
  • Porra RJ, Scheer H. Towards a more accurate future for chlorophyll a and b determinations: the inaccuracies of Daniel Arnon’s assay. Photosyn Res. 2019;140(2):215–219. doi: 10.1007/s11120-018-0579-8
  • Sulfahri MS, Amin M, Sumitro SB, et al. Bioethanol production from algae Spirogyra hyalina using Zymomonas mobilis. Biofuels. 2016;7:621–626. doi: 10.1080/17597269.2016.1168028
  • Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analyt Chemist. 1959;31:426–428. doi: 10.1021/ac60147a030
  • Sulfahri MS, Sunarto E, Irvansyah MY, et al. Ethanol production from algae Spirogyra with fermentation by Zymomonas mobilis and Saccharomyces cerevisiae. J Basic Appl Sci Res. 2011;1:589–593.
  • Caputi AJ, Ueda M, Brown T. Spectrophotometric determination of ethanol of wine. Am J Enol Viticult. 1968;19(3):160–165.
  • de Mendiburu F, de Mendiburu MF. Package ‘agricolae’. R package. version. 2019;4:1–2.
  • Team RC. R: A language and environment for statistical computing. 2013;201.
  • Huang X, Li C, Liu C, et al. Studies on the N and P nutrient demand of Nannochloris oculata. Marine Sci. 2002;26:13–17.
  • Wang L, Wang X, Jin X, et al. Analysis of algae growth mechanism and water bloom prediction under the effect of multi-affecting factor. Saudi J Biol Sci. 2017;24:556–562. doi: 10.1016/j.sjbs.2017.01.026
  • Garriga M, Almaraz M, Marchiaro A. Determination of reducing sugars in extracts of Undaria pinnatifida (harvey) algae by UV-visible spectrophotometry (DNS method). Actas De Ingenieria. 2017;3:173–179.
  • John RP, Anisha GS, Nampoothiri KM, et al. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresource Technol. 2011;102:186–193. doi: 10.1016/j.biortech.2010.06.139
  • Markou G, Angelidaki I, Nerantzis E, et al. Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies. 2013;6:3937–3950. doi: 10.3390/en6083937
  • Chen CY, Zhao XQ, Yen HW, et al. Microalgae-based carbohydrates for biofuel production. Biochem Eng J. 2013;78:1–10. doi: 10.1016/j.bej.2013.03.006
  • Bettiga M, Bengtsson O, Hahn-Hägerdal B, et al. Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb Cell Fact. 2009;24:40. doi: 10.1186/1475-2859-8-40
  • Kumar S, Gupta R, Kumar G, et al. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresource Technol. 2013;135:150–156. doi: 10.1016/j.biortech.2012.10.120
  • Sato K, Goto S, Yonemura S, et al. Effect of yeast extract and vitamin B12 on ethanol production from cellulose by Clostridium thermocellum I-1-B. Appl Environ Microbe. 1992;58:734–736.
  • Alfenore S, Molina-Jouve C, Guillouet S, et al. Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Appli Microbiol Biotechnol. 2002;60:67–72. doi: 10.1007/s00253-002-1092-7
  • Liu H, Sun J, Chang JS, et al. Engineering microbes for direct fermentation of cellulose to bioethanol. Crit Rev Biotechnol. 2018;10:1–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.