128
Views
0
CrossRef citations to date
0
Altmetric
Articles

Polar modified dendritic post-cross-linked polymer for Cu2+ adsorption

, , , &
Pages 1402-1410 | Received 17 Feb 2019, Accepted 13 Sep 2019, Published online: 03 Dec 2019

References

  • Lee SM, Barin G, Ackerman CM, et al. Copper capture in a thioether-functionalized porous polymer applied to the detection of Wilson’s disease. J Am Chem Soc. 2016;138:7603–7609. doi: 10.1021/jacs.6b02515
  • Liu JX, Pan JM, Ma Y, et al. A versatile strategy to fabricate dual-imprinted porous adsorbent for efficient treatment co-contamination of lambda-cyhalothrin and copper (II). Chem Eng J. 2018;332:517–527. doi: 10.1016/j.cej.2017.09.079
  • He Y, Liu QQ, Liu F, et al. Porous organic polymer bifunctionalized with triazine and thiophene groups as a novel adsorbent for removing Cu (II). Microp Mesop Mater. 2016;233:10–15. doi: 10.1016/j.micromeso.2016.06.024
  • Ravi S, Puthiaraj P, Row KH, et al. Aminoethanethiol-grafted porous organic polymer for Hg2+ removal in aqueous solution. Ind Eng Chem Res. 2017;56:10174–10182. doi: 10.1021/acs.iecr.7b02743
  • Gan YQ, Chen G, Sang YF, et al. Oxygen-rich hyper-cross-linked polymers with hierarchical porosity for aniline adsorption. Chem Eng J. 2019;368:29–36. doi: 10.1016/j.cej.2019.02.164
  • Peng RX, Chen G, Zhou F, et al. Catalyst-free synthesis of triazine-based porous organic polymers for Hg2+ adsorptive removal from aqueous solution. Chem Eng J. 2019;371:260–266. doi: 10.1016/j.cej.2019.04.063
  • Wang XM, Zhang T, Wang XY, et al. 4-Vinylpyridine-modified post-cross-linked resins and their adsorption of phenol and Rhodamine B. J Colloid Interf Sci. 2018;531:394–403. doi: 10.1016/j.jcis.2018.07.071
  • Zhou F, Man RL, Huang JH. Alkoxy modified hyper-cross-linked polymers with hierarchical porosity and their adsorption of salicylic acid from aqueous solution. Ind Eng Chem Res. 2018;57:12420–12428. doi: 10.1021/acs.iecr.8b03121
  • Wang XM, Mao X, Huang JH. Hierarchical porous hyper-cross-linked polymers modified with phenolic hydroxyl groups and their efficient adsorption of aniline from aqueous solution. Colloids Surf A. 2018;558:80–87. doi: 10.1016/j.colsurfa.2018.08.060
  • Shao LS, Sang YF, Huang JH, et al. Triazine-based hyper-cross-linked polymers with inorganic-organic hybrid framework derived porous carbons for CO2 capture. Chem Eng J. 2018;353:1–14. doi: 10.1016/j.cej.2018.07.108
  • Shao LS, Sang YF, Huang JH. Imidazole-based hyper-cross-linked polymers derived porous carbons for CO2 capture. Microp Mesop Mater. 2019;275:131–138. doi: 10.1016/j.micromeso.2018.08.025
  • Li BY, Su FB, Luo HK, et al. Hypercrosslinked microporous polymer networks for effective removal of toxic metal ions from water. Microp Mesop Mater. 2011;138:207–214. doi: 10.1016/j.micromeso.2010.08.023
  • Li QM, Wang Z, Li Q, et al. Competition and enhancement effect in coremoval of atenolol and copper by an easily regenerative magnetic cation exchange resin. Chemosphere. 2017;179:1–9. doi: 10.1016/j.chemosphere.2017.03.005
  • Ma YX, Xing D, Shao WJ, et al. Preparation of polyamidoamine dendrimers functionalized magnetic graphene oxide for the adsorption of Hg (II) in aqueous solution. J Colloid Interface Sci. 2017;505:352–363. doi: 10.1016/j.jcis.2017.05.104
  • Zarghami Z, Akbari A, Latifi AM, et al. Design of a new integrated chitosan-PAMAM dendrimer biosorbent for heavy metals removing and study of its adsorption kinetics and thermodynamics. Biores Technol. 2016;205:230–238. doi: 10.1016/j.biortech.2016.01.052
  • Sun CM, Qu RJ, Ji CN, et al. Preparation and adsorption properties of crosslinked polystyrene-supported low-generation diethanolamine-typed dendrimer for metal ions. Talanta. 2006;70:14–19. doi: 10.1016/j.talanta.2006.01.011
  • Golikand AN, Didehban K, Irannejad L. Synthesis and characterization of triazine-based dendrimers and their application in metal ion adsorption. J App Polym Sci. 2011;123:1245–1251. doi: 10.1002/app.33893
  • Anbia M, Haqshenas M. Adsorption studies of Pb(II) and Cu(II) ions on mesoporous carbon nitride functionalized with melamine-based dendrimer amine. Int J Environ Sci Te. 2015;12:2649–2664. doi: 10.1007/s13762-015-0776-3
  • Wang XM, Ou H, Huang JH. One-pot synthesis of the hyper-cross-linked polymers chemically modified with pyrrole, furan, and thiophene for phenol adsorption from aqueous solution. J Colloid Interf Sci. 2019;538:499–506. doi: 10.1016/j.jcis.2018.12.021
  • Deng SB, Ting YP. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr (VI) anions: sorption capacity and uptake mechanisms. Environ Sci Technol. 2005;39:8490–8496. doi: 10.1021/es050697u
  • Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc. 1917;38:102–105.
  • Freundlich HMF. Over the adsorption in solution. J Phys Chem. 1906;57:1100–1107.
  • Chen YN, Zhao W, Wang H, et al. Preparation of novel polyamine-type chelating resin with hyperbranched structures and its adsorption performance. Roy Soc Open Sci. 2018;5: 171665.
  • Chen H, Wang AQ. Adsorption characteristics of Cu (II) from aqueous solution onto poly(acrylamide)/attapulgite composite. J Hazard Mater. 2009;165:223–231. doi: 10.1016/j.jhazmat.2008.09.097
  • Liu H, Kong DL, Sun W, et al. Effect of anions on the polymerization and adsorption processes of Cu(II) ion-imprinted polymers. Chem Eng J. 2016;303:348–358. doi: 10.1016/j.cej.2016.06.004
  • Liu Y, Qian P, Yu Y, et al. Preparation and characterization of a novel hybrid chelating material for effective adsorption of Cu (II) and Pb (II). J Environ Sci. 2018;67:224–236. doi: 10.1016/j.jes.2017.08.026
  • Monier M, Ayad DM, Abdel-Latif DA. Adsorption of Cu(II), Cd(II) and Ni(II) ions by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff’s base. Colloid Surfaces B. 2012;94:250–258. doi: 10.1016/j.colsurfb.2012.01.051
  • Ren ZQ, Zhu XY, Du J, et al. Facile and green preparation of novel adsorption materials by combining sol-gel with ion imprinting technology for selective removal of Cu(II) ions from aqueous solution. Appl Surf Sci. 2018;435:574–584. doi: 10.1016/j.apsusc.2017.11.059
  • Deze EG, Papageorgiou SK, Favvas EP, et al. Porous alginate aerogel beads for effective and rapid heavy metal sorption from aqueous solutions: effect of porosity in Cu2+ and Cd2+ ion sorption. Chem Eng J. 2012;209:537–546. doi: 10.1016/j.cej.2012.07.133
  • Kołodynska D. Cu (II), Zn (II), Co (II), and Pb (II) removal in the presence of the complexing agent of a new generation. Desalination. 2011;267:175–183. doi: 10.1016/j.desal.2010.09.022
  • Hara K, Kurashige M, Dan-oh Y, et al. Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New J Chem. 2003;27:783–785. doi: 10.1039/b300694h
  • Li CJ, Zhang L, Gao Y, et al. Facile synthesis of nano ZnO/ZnS modified biochar by directly pyrolyzing of zinc contaminated corn stover for Pb (II), Cu (II) and Cr (VI) removals. Waste Manag. 2018;79:625–637. doi: 10.1016/j.wasman.2018.08.035
  • Li QM, Fu LC, Wang Z, et al. Synthesis and characterization of a novel magnetic cation exchange resin and its application for efficient removal of Cu2+ and Ni2+ from aqueous solutions. J Cleaner Prod. 2017;165:801–810. doi: 10.1016/j.jclepro.2017.06.150
  • Zhu CQ, Liu FQ, Zhang YH, et al. Nitrogen-doped chitosan-Fe(III) composite as a dual-functional material for synergistically enhanced co-removal of Cu (II) and Cr (VI) based on adsorption and redox. Chem Eng J. 2016;306:579–587. doi: 10.1016/j.cej.2016.07.096
  • Lagergren S. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar. Band 1898;24:1–39.
  • Ho YS. Review of second-order models for adsorption systems. J Hazard Mater. 2006;136:681–689. doi: 10.1016/j.jhazmat.2005.12.043
  • Weber WJ, Morris JC. Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng. 1963;89:31–60.
  • Sun CM, Qu RJ, Ji CN, et al. A chelating resin containing S, N and O atoms: synthesis and adsorption properties for Hg (II). Eur Polym J. 2006;42:188–194. doi: 10.1016/j.eurpolymj.2005.06.024
  • Liu S, Xu WH, Liu YG, et al. Facile synthesis of Cu(II) impregnated biochar with enhanced adsorption activity for the removal of doxycycline hydrochloride from water. Sci Total Environ. 2017;592:546–553. doi: 10.1016/j.scitotenv.2017.03.087
  • He J, Lu YC, Luo GS. Ca (II) imprinted chitosan microspheres: an effective and green adsorbent for the removal of Cu (II), Cd (II) and Pb (II) from aqueous solutions. Chem Eng J. 2014;244:202–208. doi: 10.1016/j.cej.2014.01.096
  • L.H. Liu, Z.C. Yang, L. Zhao, J.Y. Liu, X. Liu, J.R. Xue, A.P. Tang, Removal performance and mechanism of poly(N1, N1, N3, N3-tetraallyl propane-1,3-diaminium chloride) toward Cr (VI). Environm Technol. 2019. doi:10.1080/09593330.2019.1567825.
  • Liu LH, Liu JY, Li T, et al. Adsorption efficiency, thermodynamics, and kinetics of amino-functionalized mesoporous calcium silicate for the removal of heavy metal ions. Desalin Water Treat. 2018;107:165–181. doi: 10.5004/dwt.2018.22138
  • Liu H, Kong DL, Sun W, et al. Effect of anions on the polymerization and adsorption processes of Cu (II) ion-imprinted polymers. Chem Eng J. 2016;303:348–358. doi: 10.1016/j.cej.2016.06.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.