336
Views
12
CrossRef citations to date
0
Altmetric
Articles

Degradation of 2,4-dichlorophenol contaminated soil by ultrasound-enhanced laccase

ORCID Icon, ORCID Icon, , ORCID Icon, , & show all
Pages 1428-1437 | Received 23 May 2019, Accepted 13 Sep 2019, Published online: 27 Sep 2019

References

  • Gan L, Li B, Guo M, et al. Mechanism for removing 2,4-dichlorophenol via adsorption and Fenton-like oxidation using iron-based nanoparticles. Chemosphere. 2018;206:168–174. doi: 10.1016/j.chemosphere.2018.04.162
  • Dong H, Wei D, Wang S. Production of soluble microbial products in aerobic granular sludge system under the stress of toxic 4-chlorophenol. Environmental Technology. 2017;38(24):3192–3200. doi: 10.1080/09593330.2017.1291758
  • Bello D, Trasar-Cepeda C. Extraction and quantification of chlorophenolate molecules in soils spiked with 2,4-dichlorophenol and 2,4,5-trichlorophenol. Sci Total Environ. 2018;616–617:179–186. doi: 10.1016/j.scitotenv.2017.10.338
  • Zhang J, Liu H, Wang B, et al. Preparation of Pd/GO/Ti electrode and its electrochemical degradation for 2,4-dichlorophenol. Material Design. 2015;86:664–669. doi: 10.1016/j.matdes.2015.07.146
  • Chen W, Duan L, Wang L, et al. Adsorption of hydroxyl-and amino-substituted aromatics to carbon nanotubes. Environ Sci Technol. 2008;42:6862–6868. doi: 10.1021/es8013612
  • Zhou W, Shan J, Jiang B, et al. Inhibitory effects of carbon nanotubes on the degradation of 14 C-2,4-dichlorophenol in soil. Chemosphere. 2013;90:527–534. doi: 10.1016/j.chemosphere.2012.08.022
  • Zhou H, Qian S, Xun W, et al. Removal of 2,4-dichlorophenol from contaminated soil by a heterogeneous ZVI/EDTA/air Fenton-like system. Sep Purif Technol. 2014;132:346–353. doi: 10.1016/j.seppur.2014.05.037
  • Hoseini SN, Pirzaman AK, Aroon MA, et al. Photocatalytic degradation of 2,4-dichlorophenol by Co-doped TiO 2 (Co/TiO 2) nanoparticles and Co/TiO 2 containing mixed matrix membranes. J Water Process Eng. 2017;17:124–134. doi: 10.1016/j.jwpe.2017.02.015
  • Fan X, Wang H, Luo Q, et al. The use of 2D non-uniform electric field to enhance in situ bioremediation of 2,4-dichlorophenol-contaminated soil. J Hazard Mater. 2007;148:29–37. doi: 10.1016/j.jhazmat.2007.01.144
  • Patel BP, Kumar A. Biodegradation and co-metabolism of monochlorophenols and 2,4-dichlorophenol by microbial consortium. Clean Soil Air Water. 2017;45. doi: 10.1002/clen.201700329
  • Ahn M-Y, Dec J, Kim J-E, et al. Treatment of 2,4-dichlorophenol polluted soil with free and immobilized laccase. J Environ Qual. 2002;31:1509–1515. doi: 10.2134/jeq2002.1509
  • Wang C, Zhang H, Ren D, et al. Effect of direct-current electric field on enzymatic activity and the concentration of laccase. Indian J Microbiol. 2015;55:278–284. doi: 10.1007/s12088-015-0523-y
  • Ran X, Cui J, Li F, et al. Removal of 2,4,6-trichlorophenol by laccase immobilized on nano-copper incorporated electrospun fibrous membrane-high efficiency, stability and reusability. Chem Eng J. 2017;326: S1385894717308306.
  • Virk AP, Sharma P, Capalash N. Use of laccase in pulp and paper industry. Biotechnol Prog. 2012;28:21–32. doi: 10.1002/btpr.727
  • Tukayi K, Marilize RH. Laccase applications in biofuels production: current status and future prospects. Appl Microbiol Biotechnol. 2014;98:6525–6542. doi: 10.1007/s00253-014-5810-8
  • Ratanapongleka K, Punbut S. Removal of acetaminophen in water by laccase immobilized in barium alginate. Environmental Technology. 2017;39(3):336–345. doi: 10.1080/09593330.2017.1301563
  • Melo CF, Dezotti M, Marques MRC. A comparison between the oxidation with laccase and horseradish peroxidase for triclosan conversion. Environmental Technology. 2015;37(3):335–343. doi: 10.1080/09593330.2015.1069897
  • Tauber MM, Gübitz GM, Rehorek A. Degradation of azo dyes by oxidative processes–laccase and ultrasound treatment. Bioresour Technol. 2008;99:4213–4220. doi: 10.1016/j.biortech.2007.08.085
  • Sutar RS, Rathod VK. Ultrasound assisted laccase catalyzed degradation of Ciprofloxacin hydrochloride. J Ind Eng Chem. 2015;31:276–282. doi: 10.1016/j.jiec.2015.06.037
  • Prieto A, Möder M, Rodil R, et al. Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products. Bioresour Technol. 2011;102:10987–10995. doi: 10.1016/j.biortech.2011.08.055
  • Thangavadivel K, Megharaj M, Smart RSC, et al. Ultrasonic enhanced desorption of DDT from contaminated soils. Water Air Soil Pollut. 2011;217:115–125. doi: 10.1007/s11270-010-0572-0
  • Xue JQ, Li J-x, Lu X, et al. Absorption of sulfur dioxide using membrane and enhancement of desorption with ultrasound. Trans Nonferrous Met Soc China. 2010;20:930–934. doi: 10.1016/S1003-6326(09)60238-7
  • Abid T, Malik SN, Hussain N, et al. Electrolyte assisted sono-electrochemical decomposition of reactive red 195. J Chem Soc Pak. 2013;35:377.
  • Easson M, Condon B, Villalpando A, et al. The application of ultrasound and enzymes in textile processing of Greige cotton. Ultrasonics. 2017;84:223–233. doi: 10.1016/j.ultras.2017.11.007
  • Naddeo V, Belgiorno V, Borea L. Control of fouling formation in membrane ultrafiltration by ultrasound irradiation. Environmental Technology. 2014;36(10):1299–1307. doi: 10.1080/09593330.2014.985731
  • Yuan X, Li X, Zhang X, et al. Effect of ultrasound on structure and functional properties of laccase-catalyzed α-lactalbumin. J Food Eng. 2018;223:116–123. doi: 10.1016/j.jfoodeng.2017.12.008
  • Guo H, Zhang S, Ren DJ, et al. Degradation of 2,4-dichlorophenol catalyzed by ultrasound-assisted laccase. J Donghua Univ ( English Edition). 2018;35(6).
  • Mani P, Keshavarz T, Chandra TS, et al. Decolourisation of acid orange 7 in a microbial fuel cell with a laccase-based biocathode: influence of mitigating pH changes in the cathode chamber. Enzyme Microb Technol. 2017;96:170–176. doi: 10.1016/j.enzmictec.2016.10.012
  • Rubenwolf S, Sané S, Hussein L, et al. Prolongation of electrode lifetime in biofuel cells by periodic enzyme renewal. Appl Microbiol Biotechnol. 2012;96:841–849. doi: 10.1007/s00253-012-4374-8
  • Zhang J, Liu X, Xu Z, et al. Degradation of chlorophenols catalyzed by laccase. Int Biodeterior. 2008;61:351–356. doi: 10.1016/j.ibiod.2007.06.015
  • Park B, Son Y. Ultrasonic and mechanical soil washing processes for the removal of heavy metals from soils. Ultrason Sonochem. 2016;35: S1350417716300426.
  • Sutar RS, Rathod VK. Ultrasound assisted enzyme catalyzed degradation of Cetirizine dihydrochloride. Ultrason Sonochem. 2015;24:80–86. doi: 10.1016/j.ultsonch.2014.10.016
  • Abou-Okeil A, El-Shafie A, Zawahry MME. Ecofriendly laccase–hydrogen peroxide/ultrasound-assisted bleaching of linen fabrics and its influence on dyeing efficiency. Ultrason Sonochem. 2010;17:383–390. doi: 10.1016/j.ultsonch.2009.08.007
  • Kim YU, Wang MC. Effect of ultrasound on oil removal from soils. Ultrasonics. 2004;41:539–542. doi: 10.1016/S0041-624X(03)00168-9
  • Tauber MM, Guebitz GM, Rehorek A. Degradation of azo dyes by laccase and ultrasound treatment. Appl Environ Microbiol. 2005;71:2600–2607. doi: 10.1128/AEM.71.5.2600-2607.2005
  • Goncalves I, Silva C, Cavaco-Paulo A. Cheminform abstract: ultrasound enhanced laccase applications. Chemlnform. 2015;46.
  • Pečnik B, Hočevar M, Širok B, et al. Scale deposit removal by means of ultrasonic cavitation. Wear. 2016;356:45–52. doi: 10.1016/j.wear.2016.03.012
  • Singh A, Sinha ASK. Intensification of photocatalytic decomposition of water by ultrasound. J Energy Chem. 2018.
  • López MV, Sosa LEA, Chávez GEM, et al. Evaluation of the ultrasound effect on treated municipal wastewater. Environmental Technology. 2018;38:1–27.
  • Saoudi O, Ghaouar N, Othman T. Fluorescence study of laccase from Trametes versicolor under the effects of pH, chemical denaturants and ionic liquids. J Mol Liq. 2017;225:56–63. doi: 10.1016/j.molliq.2016.11.050
  • Han Y, Wang J, Li Y, et al. Circular dichroism and infrared spectroscopic characterization of secondary structure components of protein Z during mashing and boiling processes. Food Chem. 2015;188:201–209. doi: 10.1016/j.foodchem.2015.04.053
  • Jasim SB, Li Z, Guest EE, et al. Dichrocalc: Improvements in Computing protein circular dichroism spectroscopy in the near-Ultraviolet. J Mol Biol. 2017;430: S0022283617305892.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.