421
Views
7
CrossRef citations to date
0
Altmetric
Articles

Comparative study on photocatalytic material activity of BiOBr flower microspheres and sheet structure

, &
Pages 1461-1471 | Received 18 Apr 2019, Accepted 14 Sep 2019, Published online: 30 Sep 2019

Reference

  • Di J, Xia JX, Ji MX. Advanced photocatalytic performance of graphene-like BN modified BiOBr flower-like materials for the removal of pollutants and mechanism insight. Appl Catal., B. 2016;183:254–262. doi: 10.1016/j.apcatb.2015.10.036
  • Hsu CY, Hsu BM, Ji WT. A potential association between antibiotic abuse and existence of related resistance genes in different aquatic environments. Water Air Soil Poll. 2015;226:2235–2243. doi: 10.1007/s11270-014-2235-z
  • Luo Y, Mao DQ, Rysz M. Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environ Sci Technol. 2010;44:7220–7225. doi: 10.1021/es100233w
  • Qiao M, Ying GG, Singer AC. Review of antibiotic resistance in China and its environment. Environ Int. 2018;110:160–172. doi: 10.1016/j.envint.2017.10.016
  • Srikanth B, Goutham R, Narayan RB. Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. J Environ Manage. 2017;200:60–78. doi: 10.1016/j.jenvman.2017.05.063
  • Forgacs E, Cserhati T, Oros G. Removal of synthetic dyes from wastewaters: areview. Environ Int. 2004;30:953–971. doi: 10.1016/j.envint.2004.02.001
  • Hu JS, Zhang PF, Liang YL. In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater. Appl Catal., B. 2019;245:130–142. doi: 10.1016/j.apcatb.2018.12.029
  • Lu G, Zhang S, Ren S. Effects of solvent on BiOBr structure and hotocatalytic degradation of RhB. Mol Catal. 2016;30:383–390.
  • Li HP, Hu TX, Du N. Wavelength-dependent differences in photocatalytic performance between BiOBr nanosheets with dominant exposed (001) and (010) facets. Appl Catal., B. 2016;187:342–349. doi: 10.1016/j.apcatb.2016.01.053
  • Xiong XY, Ding LY, Wang QQ. Synthesis and photocatalytic activity of BiOBr nanosheets with tunable exposed {010} facets. Appl Catal, B. 2016;188:283–291. doi: 10.1016/j.apcatb.2016.02.018
  • Dong F, Xiong T, Yan S. Facets and defects cooperatively promote visible light plasmonic photocatalysis with Bi nanowires@BiOCl nanosheets. J Catal. 2016;344:401–410. doi: 10.1016/j.jcat.2016.10.005
  • Wei ZD, Zhao Y, Fan FT. The property of surface heterojunction performed by crystal facets for photogenerated charge separation. Comput Mater Sci. 2018;153:28–35. doi: 10.1016/j.commatsci.2018.06.022
  • Si YJ, Zhong JB, Li JZ. Efficient solar-driven photocatalytic performance of BiOBr benefiting from enhanced charg separation rate. Mater Lett. 2016;163:175–178. doi: 10.1016/j.matlet.2015.10.095
  • Wang H, Liang YH, Liu L. Reduced graphene oxide wrapped Bi2WO6 hybrid with ultrafast charge separation and improved photoelectrocatalytic performance. Appl Surf Sci. 2017;392:51–60. doi: 10.1016/j.apsusc.2016.08.068
  • Cao J, Xu BY, Luo BD. Novel BiOI/BiOBr heterojunction photocatalysts with enhanced visible light photocatalytic properties. Catal Commun. 2011;13:63–68. doi: 10.1016/j.catcom.2011.06.019
  • Wei XX, Cui HT, Guo SQ. Hybrid BiOBr-TiO2 nanocomposites with high visible lightphotocatalytic activity for water treatment. J Hazard Mater. 2013;263:650–658. doi: 10.1016/j.jhazmat.2013.10.027
  • Xing YL, He ZL, Que WX. Synthesis and characterization of ZnO nanospheres sensitized BiOBr plates with enhanced photocatalytic performances. Mater Lett. 2016;182:210–213. doi: 10.1016/j.matlet.2016.06.122
  • Hou YP, Gan YY, Yu ZB. Solar promoted azo dye degradation and energy production in the biophoton nelectrochemical system with a g-C3N4/BiOBr heterojunction photocathode. J Power Sources. 2017;371:26–34. doi: 10.1016/j.jpowsour.2017.10.033
  • Yu X, Wang L, Feng LJ. Preparation of Au/BiOBr/graphene composite and its photocatalytic performance in phenol degradation under visible light. J Fuel Chem Technol. 2016;44:937–942. doi: 10.1016/S1872-5813(16)30041-X
  • Gupta G, Kaur A, Sinha ASK. Photocatalytic degradation of levofloxacin in aqueous phase using Ag/AgBr/BiOBr microplates under visible light. Mater Res Bull. 2016;12:1–27.
  • Hu JY, Zhai CY, Yu CK. Visible light-enhanced electrocatalytic alcohol oxidation based on two dimensional Pt-BiOBr nanocomposite. J Colloid Interface Sci. 2019;3:1–28.
  • Zhang XJ, Yu S, Liu Y. Photoreduction of non-noble metal Bi on the surface of Bi2WO6, for enhanced visible light photocatalysis. Appl Surf Sci. 2017;396:652–658. doi: 10.1016/j.apsusc.2016.11.002
  • Li R, Gao XY, Fan CM. A facile approach for the tunable fabrication of BiOBr photocatalysts with high activity and stability. Appl Surf Sci. 2015;355:1075–1082. doi: 10.1016/j.apsusc.2015.07.216
  • Yu X, Fautrelle Y, Ren Z. PVA-assisted synthesis and characterization of core–shell Bi nanobelts. Mater Lett. 2015;161:144–148. doi: 10.1016/j.matlet.2015.08.082
  • Mao WT, Bao KY, Cao FP. Synthesis of a CoTiO3/BiOBr heterojunction composite with enhanced photocatalytic performance. Ceramics Int. 2017;43:3363–3368. doi: 10.1016/j.ceramint.2016.11.180
  • Qi DY, Xing MY, Zhang JL. Hydrophobic carbon-doped TiO2/MCF-F composite as a high performance photocatalyst. J Phys Chem C. 2014;118:7329–7336. doi: 10.1021/jp4123979
  • Li WB, Zhang YP, Bu YY. One-pot synthesis of the BiVO4/BiOBr heterojunction composite for enhanced photocatalytic performance. J Alloy Compd. 2016;680:677–684. doi: 10.1016/j.jallcom.2016.04.202
  • Zhang GQ, Cai L, Zhang YF. Bi5+, Bi(3-x)+, and oxygen vacancy induced BiOClxI1-x solid solution toward promoting visible-light driven photocatalytic activity. Chem-Eur J. 2018;24:7434–7444. doi: 10.1002/chem.201706164
  • Liu ZS, Wu BT, Zhao YL. Solvothermal synthesis and photocatalytic activity of Al-doped BiOBr microspheres. Ceram Int. 2014;40:5597–5603. doi: 10.1016/j.ceramint.2013.10.152
  • Lin HL, Ye HF, Li X. Facile anion-exchange synthesis of BiOI/BiOBr composite with enhanced photoelectrochemical and photocatalytic properties. Ceram Int. 2014;40:9743–9750. doi: 10.1016/j.ceramint.2014.02.060
  • Xia JX, Di J, Yin S. Improved visible light photocatalytic activity of MWCNT/BiOBr composite synthesized via a reactable ionic liquid. Ceram Int. 2014;40:4607–4616. doi: 10.1016/j.ceramint.2013.09.001
  • Lu J, Zhang YB, Li Z. Rapid response and recovery humidity sensor based on CoTiO3 thin film prepared by RF magnetron co-sputtering with post annealing process. Ceram Int. 2015;41:15176–15184. doi: 10.1016/j.ceramint.2015.08.091
  • Zou XJ, Dong YY, Zhang XD. The highly enhanced visible light photocatalytic degradation of gaseous o-dichlorobenzene through fabricating like-flowers BiPO4/BiOBr p-n heterojunction composites. Appl Surf Sci. 2017;391:525–534. doi: 10.1016/j.apsusc.2016.06.003
  • Zhou Y, Zhang XJ, Zhang Q. Role of graphene on the band structure and interfacial interaction of Bi2WO6/graphene composites with enhanced photocatalytic oxidation of NO. J Mater Chem A. 2014;2:16623–16631. doi: 10.1039/C4TA03762F
  • Dong SH, Bao XH, Deng JF. XPS study of adsorption of oxygen on silver, Acta. Chim Sinica. 1986;2:1–5.
  • Pan JB, Liu JJ, Ma HC. Structure of flower-like hierarchical CdS QDs/Bi/Bi2WO6 heterojunction with enhanced photocatalytic activity. New J Chem. 2018;42:1–2. doi: 10.1039/C8NJ90001A
  • Di J, Xia JX, Yin S. One-pot solvothermal synthesis of Cu-modified BiOCl via a Cu-containing ionic liquid and its visible-light photocatalytic properties. RSC Adv. 2014;4:14281–14290. doi: 10.1039/c3ra45670f
  • Zhang M, Bai XJ, Liu D. Enhanced catalytic activity of potassium-doped graphitic carbon nitride by lower valence position. Appl Catal B. 2015;164:77–81. doi: 10.1016/j.apcatb.2014.09.020
  • Wang SY, Yang XL, Zhang XH. A plate-on-plate sandwiched Z-scheme heterojunction photocatalyst: BiOBr-Bi2MoO6 with enhanced photocatalytic performance. Appl Surf Sci. 2017;391:194–201. doi: 10.1016/j.apsusc.2016.07.070
  • Ye LQ, Liu JY, Zhuo J. Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl Catal., B. 2013;142:1–7.
  • Zhu ZF, Yan Y, Li JQ. Preparation of flower-like BiOBr-WO3-Bi2WO6 ternary hybrid with enhanced visible-light photocatalytic activity. J Alloy Compd. 2015;651:184–192. doi: 10.1016/j.jallcom.2015.08.137
  • Peng Y, Yu PP, Chen QG. Facile fabrication of Bi12O17Br2 /Bi24O31Br10 type II heterostructures with high visible photocatalytic activity. J Phys Chem C. 2015;119:13032–13040. doi: 10.1021/acs.jpcc.5b02132
  • Ma HC, Zhao M, Xing HM. Synthesis and enhanced photoreactivity of metallic Bi-decorated BiOBr composites with abundant oxygen vacancies. J Mater Sci Mater Electron. 2015;26:10002–10011. doi: 10.1007/s10854-015-3680-1
  • Feng C, Wang Y, Jin Z. Photoactive centers responsible for visible-light photoactivity of N-doped TiO2. New J. Chem. 2008;32:1038–1047. doi: 10.1039/b719498f
  • Yu Y, Cao C, Liu H. A Bi/BiOCl heterojunction photocatalyst with enhanced electron–hole separation and excellent visible light photodegrading activity. J Mater Chem A. 2014;2:1677–1681. doi: 10.1039/C3TA14494A

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.