560
Views
29
CrossRef citations to date
0
Altmetric
Articles

Synthesis and characterization of Fe2O3 doped ZnO supported on clinoptilolite for photocatalytic degradation of metronidazole

, &
Pages 1734-1746 | Received 22 Dec 2018, Accepted 07 Oct 2019, Published online: 30 Oct 2019

References

  • Sophia AC, Lima EC. Removal of emerging contaminants from the environment by adsorption. Ecotoxicol Environ Saf. 2018;150:1–17. doi: 10.1016/j.ecoenv.2017.12.026
  • Taheran M, Naghdi M, Brar SK, et al. Emerging contaminants: here today, there tomorrow! Environmental Nanotechnology. Monit Manage. 2018;10:122–126.
  • Gil A, Taoufik N, García AM, et al. Comparative removal of emerging contaminants from aqueous solution by adsorption on an activated carbon. Environ Technol. 2018;40:1–14.
  • Grenni P, Ancona V, Barra Caracciolo A. Ecological effects of antibiotics on natural ecosystems: a review. Microchem J. 2018;136:25–39. doi: 10.1016/j.microc.2017.02.006
  • Hu Y, Wang G, Huang M, et al. Enhanced degradation of metronidazole by heterogeneous sono-Fenton reaction coupled ultrasound using Fe3O4 magnetic nanoparticles. Environ Technol. 2017;38:1–22. doi: 10.1080/09593330.2017.1374470
  • Agarwal S, Tyagi I, Gupta VK, et al. Iron doped SnO2/Co3O4 nanocomposites synthesized by sol-gel and precipitation method for metronidazole antibiotic degradation. Mater Sci Eng: C. 2017;70:178–183. doi: 10.1016/j.msec.2016.08.062
  • Aboudalle A, Fourcade F, Assadi AA, et al. Reactive oxygen and iron species monitoring to investigate the electro-Fenton performances. Impact of the electrochemical process on the biodegradability of metronidazole and its by-products. Chemosphere. 2018;199:486–494. doi: 10.1016/j.chemosphere.2018.02.075
  • Wang X, Wang A, Lu M, et al. Synthesis of magnetically recoverable Fe0/graphene-TiO2 nanowires composite for both reduction and photocatalytic oxidation of metronidazole. Chem Eng J. 2018;337:372–384. doi: 10.1016/j.cej.2017.12.090
  • Barkin JA, Sussman DA, Fifadara N, et al. Clostridium difficile Infection and Patient-specific antimicrobial resistance testing reveals a high metronidazole resistance Rate. Dig Dis Sci. 2017;62(4):1035–1042. doi: 10.1007/s10620-017-4462-9
  • Gürcü B, Koca YB, Özkut M, et al. Matrix changes due to the toxic effects of metronidazole in intestinal tissue of fish (Onchorhynchus mykiss). Chemosphere. 2016;144:1605–1610. doi: 10.1016/j.chemosphere.2015.10.043
  • Neghi N, Krishnan NR, Kumar M. Analysis of metronidazole removal and micro-toxicity in photolytic systems: effects of persulfate dosage, anions and reactor operation-mode. J Environ Chem Eng. 2018;6(1):754–761. doi: 10.1016/j.jece.2017.12.072
  • Santana DR, Espino-Estévez MR, Santiago DE, et al. Treatment of aquaculture wastewater contaminated with metronidazole by advanced oxidation techniques. environmental Nanotechnology. Monit Manage. 2017;8:11–24.
  • Kanakaraju D, Glass BD, Oelgemöller M. Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. J Environ Manage. 2018;219:189–207. doi: 10.1016/j.jenvman.2018.04.103
  • Yatmaz HC, Dizge N, Kurt MS. Combination of photocatalytic and membrane distillation hybrid processes for reactive dyes treatment. Environ Technol. 2017;38(21):2743–2751. doi: 10.1080/09593330.2016.1276222
  • Mirzaei A, Chen Z, Haghighat F, et al. Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: a review. Sustainable Cities Soc. 2016;27:407–418. doi: 10.1016/j.scs.2016.08.004
  • Farzadkia M, Esrafili A, Baghapour MA, et al. Degradation of metronidazole in aqueous solution by nano-ZnO/UV photocatalytic process. Desalin Water Treat. 2014;52(25-27):4947–4952. doi: 10.1080/19443994.2013.810322
  • Farzadkia M, Bazrafshan E, Esrafili A, et al. Photocatalytic degradation of metronidazole with illuminated TiO2 nanoparticles. J Environ Health Sci Eng. 2015;13:33–35. doi: 10.1186/s40201-015-0194-y
  • Liu J, Zhang G. Mesoporous mixed-phase Ga2O3: green synthesis and enhanced photocatalytic activity. Mater Res Bull. 2015;68:254–259. doi: 10.1016/j.materresbull.2015.03.061
  • Danwittayakul S, Songngam S, Sukkasi S. Enhanced solar water disinfection using ZnO supported photocatalysts. Environ Technol. 2018;39:1–8. doi: 10.1080/09593330.2018.1498921
  • Zhu X, Liang X, Wang P, et al. Porous Ag-ZnO microspheres as efficient photocatalyst for methane and ethylene oxidation: insight into the role of Ag particles. Appl Surf Sci. 2018;456:493–500. doi: 10.1016/j.apsusc.2018.06.127
  • Amornpitoksuk P, Suwanboon S, Randorn C. Photocatalytic activities of silver compound modified activated carbon@ZnO: novel ternary composite visible light-driven photocatalysts. Mater Sci Semicond Process. 2018;84:50–57. doi: 10.1016/j.mssp.2018.05.005
  • Chen X, Wu Z, Liu D, et al. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of Azo Dyes. Nanoscale Res Lett. 2017;12(1):143–152. doi: 10.1186/s11671-017-1904-4
  • Batistela VR, Fogaça LZ, Fávaro SL, et al. Zno supported on zeolites: photocatalyst design, microporosity and properties. Colloids Surf, A. 2017;513:20–27. doi: 10.1016/j.colsurfa.2016.11.023
  • Rashidi R, Yousefinejad S, Mokarami H. Catalytic ozonation process using CuO/clinoptilolite zeolite for the removal of formaldehyde from the air stream. Int J Environ Sci Technol. 2018;16:6629–6636. doi: 10.1007/s13762-018-2059-2
  • Sene RA, Sharifnia S, Moradi GR. On the impact evaluation of various chemical treatments of support on the photocatalytic properties and hydrogen evolution of sonochemically synthesized TiO2/clinoptilolite. Int J Hydrogen Energy. 2018;43(2):695–707. doi: 10.1016/j.ijhydene.2017.11.099
  • Siwińska-Stefańska K, Fluder M, Tylus W, et al. Investigation of amino-grafted TiO2/reduced graphene oxide hybrids as a novel photocatalyst used for decomposition of selected organic dyes. J Environ Manage. 2018;212:395–404. doi: 10.1016/j.jenvman.2018.02.030
  • Pirhashemi M, Habibi-Yangjeh A, Rahim Pouran S. Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J Ind Eng Chem. 2018;62:1–25. doi: 10.1016/j.jiec.2018.01.012
  • Hernández A, Maya L, Sánchez-Mora E, et al. Sol-gel synthesis, characterization and photocatalytic activity of mixed oxide ZnO-Fe2O3. J Solgel Sci Technol. 2007;42(1):71–78. doi: 10.1007/s10971-006-1521-7
  • Rice EW, Bridgewater L. American Public health A, American water Works A, water environment F. standard methods for the examination of water and wastewater. Washington (D.C.): American Public Health Association; 2012.
  • Korkuna O, Leboda R, Skubiszewska-Zie¸ba J, et al. Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous Mesoporous Mater. 2006;87(3):243–254. doi: 10.1016/j.micromeso.2005.08.002
  • Goodall JBM, Kellici S, Illsley D, et al. Optical and photocatalytic behaviours of nanoparticles in the Ti-Zn-O binary system. RSC Adv. 2014;4(60):31799–31809. doi: 10.1039/C3RA48030E
  • Xie J, Zhou Z, Lian Y, et al. Synthesis of α-Fe2O3/ZnO composites for photocatalytic degradation of pentachlorophenol under UV–vis light irradiation. Ceram Int. 2015;41(2, Part A):2622–2625. doi: 10.1016/j.ceramint.2014.10.043
  • Yang Y, Chun Y, Sheng G, et al. pH-Dependence of pesticide adsorption by wheat-residue-derived black carbon. Langmuir. 2004;20(16):6736–6741. doi: 10.1021/la049363t
  • Davari N, Farhadian M, Nazar ARS, et al. Degradation of diphenhydramine by the photocatalysts of ZnO/Fe2O3 and TiO2/Fe2O3 based on clinoptilolite: structural and operational comparison. J Environ Chem Eng. 2017;5(6):5707–5720. doi: 10.1016/j.jece.2017.10.052
  • Kermani M, Bahrami Asl F, Farzadkia M, et al. Heterogeneous catalytic ozonation by Nano-MgO is better than sole ozonation for metronidazole degradation, toxicity reduction, and biodegradability improvement. Desalin Water Treat. 2016;57(35):16435–16444. doi: 10.1080/19443994.2015.1081632
  • Hapeshi E, Achilleos A, Vasquez MI, et al. Drugs degrading photocatalytically: kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions. Water Res. 2010;44(6):1737–1746. doi: 10.1016/j.watres.2009.11.044
  • Farzadkia M, Rahmani K, Gholami M, et al. Investigation of photocatalytic degradation of clindamycin antibiotic by using nano-ZnO catalysts. Korean J Chem Eng. 2014;31(11):2014–2019. doi: 10.1007/s11814-014-0119-y
  • Fang Z, Chen J, Qiu X, et al. Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination. 2011;268(1):60–67. doi: 10.1016/j.desal.2010.09.051
  • Anotai J, Su C-C, Tsai Y-C, et al. Effect of hydrogen peroxide on aniline oxidation by electro-Fenton and fluidized-bed Fenton processes. J Hazard Mater. 2010;183(1):888–893. doi: 10.1016/j.jhazmat.2010.07.112
  • Nezamzadeh-Ejhieh A, Khodabakhshi-Chermahini F. Incorporated ZnO onto nano clinoptilolite particles as the active centers in the photodegradation of phenylhydrazine. J Ind Eng Chem. 2014;20(2):695–704. doi: 10.1016/j.jiec.2013.05.035

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.