257
Views
9
CrossRef citations to date
0
Altmetric
Articles

Microwave-assisted synthesis of gold nanoparticles supported on Mn3O4 catalyst for low temperature CO oxidation

, , &
Pages 2680-2689 | Received 05 Dec 2018, Accepted 18 Dec 2019, Published online: 31 Dec 2019

References

  • Ma Z, Zaera F. Heterogeneous catalysis by metals. In: Scott RA, editor. Encyclopedia of inorganic and bioinorganic chemistry. Chichester: John Wiley &Sons; 2014. p. 1–16, eibc0079.
  • Kim J, Jin SH, Kang K, et al. Preparation of chemically uniform and monodisperse microparticles as highly efficient solid acid catalysts for aldol condensation. Chem Eng Sci. 2018;175:168–174. doi: 10.1016/j.ces.2017.09.052
  • Khder AS, Ahmed SA, Altass HM. Mesoporous metal(IV) phosphates as high performance acid catalysts for the synthesis of photochromic bis-naphthopyran via claisen rearrangement. React Kinet Mech Catal. 2016;117:745–759. doi: 10.1007/s11144-015-0963-8
  • Haruta M, Kobayashi T, Sano H. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C. Chem Lett. 1987;16:405–408. doi: 10.1246/cl.1987.405
  • Ma CH, Mu Z, Li J, et al. Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene. J Am Chem Soc. 2010;132:2608–2613. doi: 10.1021/ja906274t
  • Hashmi ASK, Hutchings GJ. Gold catalysis. Angew Chem Int Ed. 2006;45:7896–7936. doi: 10.1002/anie.200602454
  • Ho KY, Yeung KL. Properties of TiO2 support and the performance of Au/TiO2 catalyst for CO oxidation reaction. Gold Bull. 2007;40:15–30. doi: 10.1007/BF03215288
  • Min BK, Friend CM. Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chem Rev. 2007;107:2709–2724. doi: 10.1021/cr050954d
  • Wang LC, Huang X, Liu Q, et al. Gold nanoparticles deposited on manganese (III) oxide as novel efficient catalyst for low temperature CO oxidation. J Catal. 2008;259:66–74. doi: 10.1016/j.jcat.2008.07.010
  • Santos VP, Pereira MFR, Orfao JJM, et al. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl Catal B. 2010;99:353–363. doi: 10.1016/j.apcatb.2010.07.007
  • Han YF, Chen L, Ramesh K, et al. Kinetic and spectroscopic study of methane combustion over α-Mn2O3 nanocrystal catalysts. J Catal. 2008;253:261–268. doi: 10.1016/j.jcat.2007.11.010
  • Venkataswamy P, Jampaiah D, Mukherjee D, et al. Mn-doped ceria solid solutions for CO oxidation at lower temperatures. Catal Lett. 2016;146:2105–2118. doi: 10.1007/s10562-016-1811-9
  • Jampaiah D, Venkataswamy P, Coyle VE, et al. Low-temperature CO oxidation over manganese, cobalt, and nickel doped CeO2 nanorods. RSC Adv. 2016;6:80541–80548. doi: 10.1039/C6RA13577C
  • Wang L, Liu Q, Huang X, et al. Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation. Appl Catal B Environ. 2009;88:204–212. doi: 10.1016/j.apcatb.2008.09.031
  • Haruta M. Size-and support-dependency in the catalysis of gold. Catal Today. 1997;36:153–166. doi: 10.1016/S0920-5861(96)00208-8
  • Lee SJ, Gavriilidis A. Supported Au catalysts for low-temperature CO oxidation prepared by impregnation. J Catal. 2002;206:305–313. doi: 10.1006/jcat.2001.3500
  • Bhaviripudi S, Jia X, Dresselhaus MS, et al. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 2010;10:4128–4133. doi: 10.1021/nl102355e
  • Haruta M, Ueda A, Tsubota S, et al. Low-temperature catalytic combustion of methanol and its decomposed derivatives over supported gold catalysts. Catal Today. 1996;29:443–447. doi: 10.1016/0920-5861(95)00318-5
  • Iizuka Y, Tode T, Takao T, et al. A kinetic and adsorption study of CO oxidation over unsupported fine gold powder and over gold supported on titanium dioxide. J Catal. 1999;187:50–58. doi: 10.1006/jcat.1999.2604
  • Okumura M, Nakamura S, Tsubota S, et al. Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2. Catal Lett. 1998;51:53–58. doi: 10.1023/A:1019020614336
  • Sanchez RMT, Ueda A, Tanaka K, et al. Selective oxidation of CO in hydrogen over gold supported on manganese oxides. J Catal. 1997;168:125–127. doi: 10.1006/jcat.1997.1636
  • Khder AS, Altass HM, Orif MI, et al. Preparation and characterization of highly active Pd nanoparticles supported Mn3O4 catalyst for low-temperature CO oxidation. Mater Res Bull. 2019;113:215–222. doi: 10.1016/j.materresbull.2019.02.011
  • Fouad OA, Khder AS, Dai Q, et al. Structural and catalytic properties of ZnO and Al2O3 nanostructures loaded with metal nanoparticles. J Nanopart Res. 2011;13:7075–7083. doi: 10.1007/s11051-011-0620-8
  • Ahmed AI, El-Hakam SA, Khder AS, et al. Nanostructure sulfated tin oxide as an efficient catalyst for the preparation of 7-hydroxy-4-methyl coumarin by Pechmann condensation reaction. J Mole Catal A Chem. 2013;366:99–108. doi: 10.1016/j.molcata.2012.09.012
  • Solsona BE, Garcia T, Jones C, et al. Supported gold catalysts for the total oxidation of alkanes and carbon monoxide. Appl Catal A Gen. 2006;312:67–76. doi: 10.1016/j.apcata.2006.06.016
  • Stobbe ER, de Boer BA, Geus JW. The reduction and oxidation behavior of manganese oxides. Catal Today. 1999;47:161–167. doi: 10.1016/S0920-5861(98)00296-X
  • Li P, He C, Cheng J, et al. Catalytic oxidation of toluene over Pd/Co3AlO catalysts derived from hydrotalcite-like compounds: effects of preparation methods. Appl Catal B. 2011;101:570–579. doi: 10.1016/j.apcatb.2010.10.030
  • Bergeld J, Kasemo B, Chakarov D V. CO oxidation on Pt (1 1 1) promoted by coadsorbed H2O. Surf Sci. 2001;495:L815–L820. doi: 10.1016/S0039-6028(01)01598-9
  • Hussain ST, Iqbal M, Mazhar M. Size control synthesis of starch capped-gold nanoparticles. J Nanopart Res. 2009;11:1383–1391. doi: 10.1007/s11051-008-9525-6
  • Dalacu D, Klemberg-Sapieha JE, Martinu L. Substrate and morphology effects on photoemission from core-levels in gold clusters. Surf Sci. 2001;472:33–40. doi: 10.1016/S0039-6028(00)00919-5
  • Howard A, Clark DNS, Mitchell CEJ, et al. Initial and final state effects in photoemission from Au nanoclusters on TiO2 (110). Surf Sci. 2002;518:210–224. doi: 10.1016/S0039-6028(02)02124-6
  • Allen GC, Harris SJ, Jutson JA, et al. A study of a number of mixed transition metal oxide spinels using X-ray photoelectron spectroscopy. Appl Surf Sci. 1989;37:111–134. doi: 10.1016/0169-4332(89)90977-X
  • Chairam S, Konkamdee W, Parakhun R. Starch-supported gold nanoparticles and their use in 4-nitrophenol reduction. J Saudi Chem Soc. 2017;21:656–663. doi: 10.1016/j.jscs.2015.11.001
  • Raj BGS, Asiri AM, Wu JJ, et al. Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application. J Alloys Comp. 2015;636:234–240. doi: 10.1016/j.jallcom.2015.02.164
  • Kang M, Park ED, Kim JM, et al. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. App Catal A. 2007;327:261–269. doi: 10.1016/j.apcata.2007.05.024
  • Xing X, Cai Y, Chen N, et al. Synthesis of mixed Mn–Ce–Ox one dimensional nanostructures and their catalytic activity for CO oxidation. Ceram Inter. 2015;41:4675–4682. doi: 10.1016/j.ceramint.2014.12.014
  • Orendorz A, Wüsten J, Ziegler C, et al. Photoelectron spectroscopy of nanocrystalline anatase TiO2 films. Appl Surf Sci. 2005;252:85–88. doi: 10.1016/j.apsusc.2005.02.002
  • Tai Y, Tajiri K. Preparation, thermal stability, and CO oxidation activity of highly loaded Au/titania-coated silica aerogel catalysts. Appl Catal A Gen. 2008;342:113–118. doi: 10.1016/j.apcata.2008.03.006
  • Altass HM, Khder AS. Catalytic oxidation of carbon monoxide over of gold-supported iron oxide catalyst. J Mater Res Innov. 2018;22:107–114. doi: 10.1080/14328917.2016.1264707
  • Jiang HL, Liu B, Akita T, et al. Au@ ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. JACS. 2009;131:11302–11303. doi: 10.1021/ja9047653
  • Laguna OH, Murcia JJ, Rojas H, et al. Differences in the catalytic behavior of Au-metalized TiO2 systems during phenol photo-degradation and CO oxidation. Catalysts. 2019;9:331–345. doi: 10.3390/catal9040331
  • Liu MH, Chen YW, Lin TS, et al. Defective mesocrystal ZnO-supported gold catalysts: facilitating CO oxidation via vacancy defects in ZnO. ACS Catal. 2018;8:6862–6869. doi: 10.1021/acscatal.8b01282
  • Najafishirtari S, Guardia P, Scarpellini A, et al. The effect of Au domain size on the CO oxidation catalytic activity of colloidal Au–FeOx dumbbell-like heterodimers. J Catal. 2016;338:115–123. doi: 10.1016/j.jcat.2016.03.002
  • Qwabe LQ, Friedrich HB, Singh S. Remediation of CO by oxidation over Au nanoparticles supported on mixed metal oxides. J Environ Chem Eng. 2019;7:102827–102837. doi: 10.1016/j.jece.2018.102827
  • Valechha D, Megarajan SK, Al-Fatesh A, et al. Low temperature CO oxidation over a novel nano-structured, mesoporous CeO2 supported Au catalyst. Catal Lett. 2019;149:127–140. doi: 10.1007/s10562-018-2603-1
  • Haruta M, Daté M. Advances in the catalysis of Au nanoparticles. Appl Catal A Gen. 2001;222:427–437. doi: 10.1016/S0926-860X(01)00847-X
  • Zou Z, Meng M, Zha Y. Surfactant-assisted synthesis, characterizations, and catalytic oxidation mechanisms of the mesoporous MnOx−CeO2 and Pd/MnOx−CeO2 catalysts used for CO and C3H8 oxidation. J Phys Chem C. 2010;114:468–477. doi: 10.1021/jp908721a
  • Bond GC, Thompson D. Gold-catalysed oxidation of carbon monoxide. Gold Bull. 2000;33:41–50. doi: 10.1007/BF03216579
  • Valden M, Lai X, Goodman DW. Onset of catalytic activity of gold clusters on Titania with the appearance of nonmetallic properties. Science. 1998;281:1647–1650. doi: 10.1126/science.281.5383.1647
  • Zhan W, Zhang X, Guo Y, et al. Synthesis of mesoporous CeO2-MnOx binary oxides and their catalytic performances for CO oxidation. J Rare Earths. 2014;32:146–152. doi: 10.1016/S1002-0721(14)60044-2
  • Tang XF, Li YG, Huang XM, et al. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature. Appl Catal. B. 2006;62:265–273. doi: 10.1016/j.apcatb.2005.08.004
  • Park JS, Doh DS, Lee KY. High catalytic activity of PdOx/MnO2 for CO oxidation and importance of oxidation state of Mn. Top Catal. 2000;10:127–131. doi: 10.1023/A:1019124419791
  • Schryer DR, Upchurch BT, Van Norman JD, et al. The effects of pretreatment conditions on a Pt/SnO2 catalyst for the oxidation of CO in CO2 lasers. J Catal. 1990;122:193–197. doi: 10.1016/0021-9517(90)90270-T
  • Gardner SD, Hoflund GB, Schryer DR, et al. Characterization study of silica-supported platinized tin oxide catalysts used for low-temperature carbon monoxide oxidation: effect of pretreatment temperature. J Phys Chem. 1991;95:835–838. doi: 10.1021/j100155a064
  • Cui X, Wang Y, Chen L, et al. Synergetic catalytic effects in tri-component mesostructured Ru–Cu–Ce oxide nanocomposite in CO oxidation. Chem Cat Chem. 2014;6:2860–2871.
  • Kung MC, Davis RJ, Kung HH. Understanding Au-catalyzed low-temperature CO oxidation. J Phys Chem C. 2007;111:11767–11775. doi: 10.1021/jp072102i
  • Wang L, He L, Liu Y, et al. Effect of pretreatment atmosphere on CO oxidation over α-Mn2O3 supported gold catalysts. J Catal. 2009;264:145–153. doi: 10.1016/j.jcat.2009.04.006
  • Bautista FM, Campelo JM, Garcıa A, et al. Influence of acid–base properties of catalysts in the gas-phase dehydration–dehydrogenation of cyclohexanol on amorphous AlPO4 and several inorganic solids. Appl Catal A Gen. 2003;243:93–107. doi: 10.1016/S0926-860X(02)00540-9
  • Khder A S. Preparation, characterization and catalytic activity of tin oxide-supported 12-tungsto phosphoric acid as a solid catalyst. Appl Catal A Gen. 2008;343:109–116. doi: 10.1016/j.apcata.2008.03.027
  • Khder AS, Ashour SS, Altass HM, et al. Pd nanoparticles supported on iron oxide nanorods for CO oxidation: effect of preparation method. J Enviro Chem Eng. 2016;4:4794–4800. doi: 10.1016/j.jece.2016.10.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.