238
Views
11
CrossRef citations to date
0
Altmetric
Articles

Photochemical mineralization of amoxicillin medicinal product by means of UV, hydrogen peroxide, titanium dioxide and iron

, &
Pages 2941-2949 | Received 24 Feb 2019, Accepted 12 Jan 2020, Published online: 29 Jan 2020

References

  • Poulopoulos SG, Nikolaki M, Karampetsos D, et al. Photochemical treatment of 2-chlorophenol aqueous solutions using ultraviolet radiation, hydrogen peroxide and photo-Fenton reaction. J Hazard Mater. 2008;153:582–587. doi: 10.1016/j.jhazmat.2007.09.002
  • Bauer R, Waldner G, Fallmann H, et al. The photo-fenton reaction and the TiO2/UV process for waste water treatment – novel developments. Catal Today. 1999;53:131–144. doi: 10.1016/S0920-5861(99)00108-X
  • Kolpin DW, Furlong ET, Meyer MT, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol. 2002;36:1202–1211. doi: 10.1021/es011055j
  • Boreen AL, Arnold WA, McNeill K. Photodegradation of pharmaceuticals in the aquatic environment: a review. Aquat Sci. 2003;65(4):320–341. doi: 10.1007/s00027-003-0672-7
  • Kümmerer K. The presence of pharmaceuticals in the environment due to human use – present knowledge and future challenges. J Environ Manage. 2009;90(8):2354–2366. doi: 10.1016/j.jenvman.2009.01.023
  • Halling-Sørensen B, Nors Nielsen S, Lanzky PF, et al. Occurrence, fate and effects of pharmaceutical substances in the environment – a review. Chemosphere. 1998;36:357–393. doi: 10.1016/S0045-6535(97)00354-8
  • Song W, Cooper WJ, Mezyk SP, et al. Free radical destruction of β-blockers in aqueous solution. Environ Sci Technol. 2008;42:1256–1261. doi: 10.1021/es702245n
  • Tong AYC, Peake BM, Braund R. Disposal practices for unused medications around the world. Environ Int. 2011;37(1):292–298. doi: 10.1016/j.envint.2010.10.002
  • Johnson DJ, Sanderson H, Brain RA, et al. Toxicity and hazard of selective serotonin reuptake inhibitor antidepressants fluoxetine, fluvoxamine, and sertraline to algae. Ecotoxicol Environ Saf. 2007;67:128–139. doi: 10.1016/j.ecoenv.2006.03.016
  • World Health Organization. Pharmaceuticals in drinking water: public health and environment water, sanitation, hygiene and health. Geneva: WHO; 2011. WHO/HSE/WSH/11.05.
  • Schultz MM, Furlong ET. Trace analysis of antidepressant pharmaceuticals and their select degradates in aquatic matrixes by LC/ESI/MS/MS. Anal Chem. 2008;80:1756–1762. doi: 10.1021/ac702154e
  • Lamas J P, Salgado-Petinal C, García-Jares C, et al. Solid-phase microextraction-gas chromatography-mass spectrometry for the analysis of selective serotonin reuptake inhibitors in environmental water. J Chromatogr A. 2004;1046(1-2):241–247. doi: 10.1016/j.chroma.2004.06.099
  • Kummerer K. Antibiotics in the aquatic environment – a review – part I. Chemosphere. 2009;75:417–434. doi: 10.1016/j.chemosphere.2008.11.086
  • Kümmerer K. Antibiotics in the aquatic environment – a review – part II. Chemosphere. 2009;75:435–441. doi: 10.1016/j.chemosphere.2008.12.006
  • Santoke H, Song W, Cooper WJ, et al. Advanced oxidation treatment and photochemical fate of selected antidepressant pharmaceuticals in solutions of Suwannee River humic acid. J Hazard Mater. 2012;217–218:382–390. doi: 10.1016/j.jhazmat.2012.03.049
  • Nghiem LD, Schäfer AI, Elimelech M. Pharmaceutical retention mechanisms by nanofiltration membranes. Environ Sci Technol. 2005;39:7698–7705. doi: 10.1021/es0507665
  • Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett. 2002;131:5–17. doi: 10.1016/S0378-4274(02)00041-3
  • Hartig C, Ernst M, Jekel M. Membrane filtration of two sulphonamides in tertiary effluents and subsequent adsorption on activated carbon. Water Res. 2001;35:3998–4003. doi: 10.1016/S0043-1354(01)00109-9
  • Kusturica M P, Tomas A, Tomic Z, et al. Analysis of expired medications in Serbian households. Zdr Varst. 2016;55:195–201.
  • Tischler L, Buzby M, Finan DS, et al. Landfill disposal of unused medicines reduces surface water releases. Integr Environ Assess Manag. 2013;9:142–154. doi: 10.1002/ieam.1311
  • Glaze WH, Kang JW, Chapin DH. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci Eng. 1987;9:335–352. doi: 10.1080/01919518708552148
  • Raharinirina D, Ramanantsizehena G, Razafindramisa F, et al. Comparison of UV/H2O2 and UV/S2O82- processes for the decoloration of azo dyes Congo red in various kinds of water. In: Narison S, editor. Proc. 4th High-Energy Phys. Int. Conf. Antananarivo, Madagascar; 2009. p. 1–9.
  • Trovó AG, Melo SAS, Nogueira RFP. Photodegradation of the pharmaceuticals amoxicillin, bezafibrate and paracetamol by the photo-Fenton process – application to sewage treatment plant effluent. J Photochem Photobiol A Chem. 2008;198:215–220. doi: 10.1016/j.jphotochem.2008.03.011
  • Martins AF, Mayer F, Confortin EC, et al. A study of photocatalytic processes involving the degradation of the organic load and amoxicillin in hospital wastewater. Clean – Soil, Air, Water. 2009;37:365–371. doi: 10.1002/clen.200800022
  • Mavronikola C, Demetriou M, Hapeshi E, et al. Mineralisation of the antibiotic amoxicillin in pure and surface waters by artificial UVA- and sunlight-induced Fenton oxidation. J Chem Technol Biotechnol. 2009;84:1211–1217. doi: 10.1002/jctb.2159
  • Elmolla ES, Chaudhuri M. Degradation of the antibiotics amoxicillin, ampicillin and cloxacillin in aqueous solution by the photo-Fenton process. J Hazard Mater. 2009;172:1476–1481. doi: 10.1016/j.jhazmat.2009.08.015
  • Elmolla ES, Chaudhuri M. Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution. Desalination. 2010;256:43–47. doi: 10.1016/j.desal.2010.02.019
  • Trovó AG, Pupo Nogueira RF, Agüera A, et al. Degradation of the antibiotic amoxicillin by photo-Fenton process – chemical and toxicological assessment. Water Res. 2011;45:1394–1402. doi: 10.1016/j.watres.2010.10.029
  • Benitez FJ, Acero JL, Real FJ, et al. Comparison of different chemical oxidation treatments for the removal of selected pharmaceuticals in water matrices. Chem Eng J. 2011;168:1149–1156. doi: 10.1016/j.cej.2011.02.001
  • Wilson R. An axiomatic model of logrolling. Am Econ Rev. 1969;59:331–341.
  • Elmolla ES, Chaudhuri M. Combined photo-Fenton-SBR process for antibiotic wastewater treatment. J Hazard Mater. 2011;192:1418–1426. doi: 10.1016/j.jhazmat.2011.06.057
  • Ayodele OB, Lim JK, Hameed BH. Pillared montmorillonite supported ferric oxalate as heterogeneous photo-Fenton catalyst for degradation of amoxicillin. Appl Catal A Gen. 2012;413–414:301–309. doi: 10.1016/j.apcata.2011.11.023
  • Chaudhuri M, Wahap MZBA, Affam AC. Treatment of aqueous solution of antibiotics amoxicillin and cloxacillin by modified photo-Fenton process. Desalin Water Treat. 2013;51:7255–7268. doi: 10.1080/19443994.2013.773565
  • Zhao Q, Feng L, Cheng X, et al. Photodegradation of amoxicillin in aqueous solution under simulated irradiation: Influencing factors and mechanisms. Water Sci Technol. 2013;67:1605–1611. doi: 10.2166/wst.2013.033
  • Sheydaei M, Aber S, Khataee A. Degradation of amoxicillin in aqueous solution using nanolepidocrocite chips/H2O2/UV: optimization and kinetics studies. J Ind Eng Chem. 2014;20:1772–1778. doi: 10.1016/j.jiec.2013.08.031
  • Alalm MG, Tawfik A, Ookawara S. Degradation of four pharmaceuticals by solar photo-Fenton process: kinetics and costs estimation. J Environ Chem Eng. 2015;3:46–51. doi: 10.1016/j.jece.2014.12.009
  • Wang X, Wang A, Ma J. Visible-light-driven photocatalytic removal of antibiotics by newly designed C3N4@MnFe2O4-graphene nanocomposites. J Hazard Mater. 2017;336:81–92. doi: 10.1016/j.jhazmat.2017.04.012
  • Perini JAL, Tonetti AL, Vidal C, et al. Simultaneous degradation of ciprofloxacin, amoxicillin, sulfathiazole and sulfamethazine, and disinfection of hospital effluent after biological treatment via photo-Fenton process under ultraviolet germicidal irradiation. Appl Catal B Environ. 2018;224:761–771. doi: 10.1016/j.apcatb.2017.11.021
  • Elmolla ES, Chaudhuri M. Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. J Hazard Mater. 2010;173:445–449. doi: 10.1016/j.jhazmat.2009.08.104
  • Elmolla ES, Chaudhuri M. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination. 2010;252:46–52. doi: 10.1016/j.desal.2009.11.003
  • Mohammadi R, Massoumi B, Rabani M. Photocatalytic decomposition of amoxicillin trihydrate antibiotic in aqueous solutions under UV irradiation using Sn/TiO2 nanoparticles. Int J Photoenergy. 2012;2012:1–11. doi: 10.1155/2012/514856
  • Leong KH, Chu HY, Ibrahim S, et al. Palladium nanoparticles anchored to anatase TiO2 for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity. Beilstein J Nanotechnol. 2015;6:428–437. doi: 10.3762/bjnano.6.43
  • Rodríguez-López JL, Aba-Guevara CG, Lozano-Álvarez JA, et al. Comparison of two synthesis methods on the preparation of Fe, N-Co-doped TiO2 materials for degradation of pharmaceutical compounds under visible light. Ceram Int. 2017;43:5068–5079. doi: 10.1016/j.ceramint.2017.01.018
  • Boussatha N, Gilliot M, Ghoualem H, et al. Formation of nanogranular ZnO ultrathin films and estimation of their performance for photocatalytic degradation of amoxicillin antibiotic. Mater Res Bull. 2018;99:485–490. doi: 10.1016/j.materresbull.2017.11.053
  • Arce-Sarria A, Machuca-Martínez F, Bustillo-Lecompte C, et al. Degradation and loss of antibacterial activity of commercial amoxicillin with TiO2/WO3-assisted solar photocatalysis. Catalysts. 2018;8:222. doi: 10.3390/catal8060222
  • Pastrana-Martínez LM, Morales-Torres S, Carabineiro SAC, et al. Photocatalytic activity of functionalized nanodiamond-TiO2 composites towards water pollutants degradation under UV/Vis irradiation. Appl Surf Sci. 2018;458:839–848. doi: 10.1016/j.apsusc.2018.07.102
  • Mirzaei A, Chen Z, Haghighat F, et al. Magnetic fluorinated mesoporous g-C3N4 for photocatalytic degradation of amoxicillin: transformation mechanism and toxicity assessment. Appl Catal B Environ. 2019;242:337–348. doi: 10.1016/j.apcatb.2018.10.009
  • Mondal B, Adak A, Datta P. Effect of operating conditions and interfering substances on photochemical degradation of a cationic surfactant. Environ Technol. 2018;39:2771–2780. doi: 10.1080/09593330.2017.1365943
  • Ünal K, Palabiyik IM, Karacan E, et al. Spectrophotometric determination of amoxicillin in pharmaceutical formulations. Turkish J Pharm Sci. 2008;5:1–15.
  • Poulopoulos SG, Yerkinova A, Ulykbanova G, et al. Photocatalytic treatment of organic pollutants in a synthetic wastewater using UV light and combinations of TiO2, H2O2 and Fe(III). PLoS One. 2019;14(5):1–20. doi: 10.1371/journal.pone.0216745
  • Ewa LK, Bolton JR. Flash photolysis/HPLC applications 2. Direct photolysis vs. hydrogen peroxide mediated photodegradation of 4-chlorophenol as studied by a flash photolysis/HPLC technique. Environ Sci Technol. 1992;26:259–262. doi: 10.1021/es00026a003
  • Matthews RW. Purification of water with near UV illuminated suspensions of titanium dioxide. Water Res. 1990;24:653–660. doi: 10.1016/0043-1354(90)90199-G
  • Deng Y, Englehardt JD. Treatment of landfill leachate by the Fenton process. Water Res. 2006;40(20):3683–3694. doi: 10.1016/j.watres.2006.08.009
  • Bolton JR, Bircher KG, Tumas W, et al. Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC technical report). Pure Appl Chem. 2001;73(4):627–637. doi: 10.1351/pac200173040627
  • Foteinis S, Borthwick AGL, Frontistis Z, et al. Environmental sustainability of light-driven processes for wastewater treatment applications. J Clean Prod. 2018;182:8–15. doi: 10.1016/j.jclepro.2018.02.038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.