196
Views
9
CrossRef citations to date
0
Altmetric
Articles

Biodegradation of reactive yellow dye using mixed cells immobilized in different biocarriers by sequential anaerobic/aerobic biotreatment: experimental and modelling study

&
Pages 2991-3010 | Received 13 Jul 2019, Accepted 17 Jan 2020, Published online: 11 Feb 2020

References

  • Jin X, Liu G, Xu Z, et al. Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Appl Microbiol Biotechnol. 2007;74:239–243. doi: 10.1007/s00253-006-0658-1
  • Nigam P, Marchant R. Selection of a substratum for composing biofilm system of a textile-effluent decolorizing bacteria. Biotechnol Lett. 1995;17:993–996. doi: 10.1007/BF00127441
  • Weisburger JH. Comments on the history and importance of aromatic and heterocyclic amines in public health. Mutat Res. 2002;506–507:9–20. doi: 10.1016/S0027-5107(02)00147-1
  • Bheemaraddi MC, Shivannavar CT, Gaddad SM. Effect of carbon and nitrogen sources on biodegradation of textile azo dye reactive violet 5 by Pseudomonas aeruginosa GSM3. SAJB. 2014;2:285–289.
  • Chen KC, Wu JY, Liou DJ, et al. Decolorization of the textile dyes by newly isolated bacterial strains. J Biotechnol. 2003;101:57–68. doi: 10.1016/S0168-1656(02)00303-6
  • Asad S, Amoozegar MA, Pourbabaee AA, et al. Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresour Technol. 2007;98:2082–2088. doi: 10.1016/j.biortech.2006.08.020
  • Fitzgerald SW, Bishop PL. Two-stage anaerobic/aerobic treatment of sulfonated azo dyes. J Environ Sci Health. 1995;30:1251–1276.
  • Taştan BE, Ertuğrul S, Dönmez G. Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresour Technol. 2010;101:870–876. doi: 10.1016/j.biortech.2009.08.099
  • San Keskin NO, Celebioglu A, Sarioglu OF, et al. Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater. Colloids Surf B. 2018;161:169–176. doi: 10.1016/j.colsurfb.2017.10.047
  • Chen W, Mulchandani A, Deshusses MA. Environmental biotechnology: challenges and opportunities for chemical engineers. AIChE J. 2005;51:690–695. doi: 10.1002/aic.10487
  • Saratale GD, Saratale RG, Chang JS, et al. Fixed-bed decolorization of reactive blue 172 by Proteus vulgaris NCIM–2027 immobilized on Luffa cylindrica sponge. Int Biodeterior Biodegrad. 2011;65:494–503. doi: 10.1016/j.ibiod.2011.01.012
  • Prasad SS, Aikat K. Study of bio–degradation and bio-decolourization of azo dye by Enterobacter sp. SXCR. Environ Technol. 2014;35:956–965. doi: 10.1080/09593330.2013.856957
  • Lade H, Kadam A, Paul D, et al. A low-cost wheat bran medium for biodegradation of the Benzidine-based carcinogenic dye Trypan blue using a microbial consortium. Int J Environ Res Public Health. 2015;12:3480–3505. doi: 10.3390/ijerph120403480
  • Patil PS, Shedbalkar UU, Kalyani DC, et al. Biodegradation of reactive blue 59 by isolated bacterial consortium PMB11. J Ind Microbiol Biotechnol. 2008;35:1181–1190. doi: 10.1007/s10295-008-0398-6
  • Suganya K, Revathi K. Decolorization of reactive dyes by immobilized bacterial cells from textile effluents. Int J Curr Microbiol Appl Sci. 2016;5:528–532. doi: 10.20546/ijcmas.2016.501.053
  • Frindt B, Mattusch J, Reemtsma T, et al. Multidimensional monitoring of anaerobic/aerobic azo dye based wastewater treatments by hyphenated UPLC–ICP–MS/ESI–Q–TOF–MS techniques. Environ Sci Pollut Res. 2017;24:10929–10938. doi: 10.1007/s11356-016-7075-5
  • Olivo-Alanis D, Garcia-Reyes RB, Alvarez LH, et al. Mechanism of anaerobic bio-reduction of azo dye assisted with lawsone immobilized activated carbon. J Hazard Mater. 2018;347:423–430. doi: 10.1016/j.jhazmat.2018.01.019
  • Akpor OB. Dye decolorization by immobilized and free bacteria cells at different glucose concentration. Res. J Environ Sci. 2018;12:30–40.
  • Dixit S, Grag S. Biodegradation of environmentally hazardous azo dyes and aromatic amines using Klebsiella pneumonia. J Environ Eng. 2018;144:04018035-1–04018035-11. doi: 10.1061/(ASCE)EE.1943-7870.0001353
  • Ghangrekar MM, Joshi SG, Asolekar SR. Characteristics of sludge developed under different loading conditions during UASB reactor start-up. Water Res. 2005;39:1123–1133. doi: 10.1016/j.watres.2004.12.018
  • Marrot B, Barrios-Martinez A, Moulin P, et al. Biodegradation of high phenol concentration by activated sludge in an immersed membrane bioreactor. Biochem Eng J. 2006;30:174–183. doi: 10.1016/j.bej.2006.03.006
  • Stolarzewicz I, Bialecka–Florjañczyk E, Majewska E, et al. Immobilization of yeast on polymeric supports. Chem. Biochem. Eng Q. 2011;25:135–144.
  • Cruz I, Bashan Y, Carmona G, et al. Biological deterioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment. Appl Microbiol Biotechnol. 2013;97:9847–9858. doi: 10.1007/s00253-013-4703-6
  • Gomare SS, Govindwar SP. Brevibacillus laterosporus MTCC 2298: a potential azo dye degrader. J Appl Microbiol. 2009;106:993–1004. doi: 10.1111/j.1365-2672.2008.04066.x
  • Zhao M, Sun PF, Du LN, et al. Biodegradation of methyl red by Bacillus sp. strain UN2: decolorization capacity, metabolites characterization, and enzyme analysis. Environ Sci Pollut Res. 2014;21:6136–6145. doi: 10.1007/s11356-014-2579-3
  • Bae W, Han D, Cui F, et al. Microbial evaluation for biodegradability of recalcitrant organic in textile wastewater using an immobilized–cell activated sludge process. Int J Civ Eng. 2014;18:965–970.
  • Wu YA, Wisecarver KD. Cell immobilization using PVA crosslinked with boric acid. Biotechnol Bioeng. 1992;39:447–449. doi: 10.1002/bit.260390411
  • Kumar D, Chauhan P, Puri N, et al. Production of alkaline thermostable protease by immobilized cells of alkalophilic Bacillus sp. NB 34. Int J Curr Microbiol Appl Sci. 2014;3:1063–1080.
  • Liu Y. Overview of some theoretical approaches for derivation of the Monod equation. Appl Microbiol Biotechnol. 2007;73:1241–1250. doi: 10.1007/s00253-006-0717-7
  • Motamedi M, Habibi A, Maleki M, et al. Experimental investigation and kinetic modeling of p-Nitrophenol and phenol by Kissiris-immobilized Ralstonia eutropha in a batch reactor. Clean-Air Soil Water. 2013;4:237–243.
  • Moon SH, Lee KB, Paruekar SJ. Rigorous model for spherical cell-support aggregates. Biotechnol Bioprocess Eng. 2001;6:42–50. doi: 10.1007/BF02942249
  • Mizzouri NS, Shaaban MG. Kinetic and hydrodynamic assessment of an aerobic purification system for petroleum refinery wastewater treatment in a continuous regime. Int Biodeterior Biodegrad. 2013;83:1–9. doi: 10.1016/j.ibiod.2013.03.026
  • Sarker S, Mazumder D. Feasibility of hybrid bioreactor in the treatment of wastewater containing slowly biodegradable substances. Int J Environ Sci. 2014;5:383–400.
  • Noh SH, Tsezos M, Baird MHI. A batch reactor mass transfer kinetic model for immobilized biomass biosorption. Biotechnol Bioeng. 1988;32:545–553. doi: 10.1002/bit.260320418
  • Ghosalker A, Kashid MG. Oxygen uptake rate measurement by modified dynamic method and effect of mass-transfer rates on growth of Pichia Stipitis: modeling and experimental data comparison. Austin J Biotechnol Bioeng. 2016;3:1–6.
  • Stewart HA, Al-Omari A, Bott C, et al. Dual substrate limitation modeling and implications for mainstream deammonification. Water Res. 2017;116:95–105. doi: 10.1016/j.watres.2017.03.021
  • Lin YP, Huang GH, Lu HW, et al. Modeling of substrate degradation and oxygen consumption in waste composting processes. Waste Manage. 2008;28:1375–1385. doi: 10.1016/j.wasman.2007.09.016
  • Taguchi H, Humphrey A. Dynamic measurement of the volumetric oxygen transfer coefficient in fermentation systems. J Fermen Technol. 1966;44:881–889.
  • Garcia-Ochoaa F, Gomeza E, Santosa VE, et al. Oxygen uptake rate in microbial processes: an overview. Biochem Eng J. 2010;49:289–307. doi: 10.1016/j.bej.2010.01.011
  • Fogler HS. Elements of chemical reaction engineering. 4th ed. Boston (MA): Prentice-Hall; 2006.
  • Cheng Y, Lin H, Chen Z, et al. Biodegradation of crystal violet using Burkholderia vietnamiensis C09V immobilized on PVA–sodium alginate–kaolin gel beads. Ecotoxicol Environ Saf. 2012;83:108–114. doi: 10.1016/j.ecoenv.2012.06.017
  • Nachiya CV, Rajkumar GS. Mechanism of navitan fast blue S5R degradation by pseudomonas aeruginosa. Chemosphere. 2004;57:165–169. doi: 10.1016/j.chemosphere.2004.05.030
  • Jonstrup M, Kumar N, Murto M, et al. Sequential anaerobic–aerobic treatment of azo dyes: decolourisation andamine degradability. Desalination. 2011;280:339–346. doi: 10.1016/j.desal.2011.07.022
  • Kapdan KI, Oztekin R. The effect of hydraulic residence time and initial COD concentration on color and COD removal performance of the anaerobic–aerobic SBR system. J Hazard Mater. 2006;136:896–901. doi: 10.1016/j.jhazmat.2006.01.034
  • Yaşar S, Cirik K, Cinar O. The effect of cyclic anaerobic–aerobic conditions on biodegradation of azo dyes. Bioprocess Biosyst Eng. 2012;35:449–457. doi: 10.1007/s00449-011-0584-1
  • Chang J-S, Chou C, Chen S-Y. Decolorization of azo dyes with immobilized Pseudomonas luteola. Process Biochem. 2001;36:757–763. doi: 10.1016/S0032-9592(00)00274-0
  • Roy U, Sengupta S, Banerjee P, et al. Assessment on the decolourization of textile dye (reactive yellow) using Pseudomonas sp. immobilized on fly ash: response surface methodology optimization and toxicity evaluation. J Environ Manage. 2018;223:185–195. doi: 10.1016/j.jenvman.2018.06.026
  • Fei L, Wen-juan M, Xue L, et al. Characterization of Microcystis Aeruginosa immobilized in complex of PVA and sodium alginate and its application on phosphorous removal in wastewater. J Cent South Univer. 2015;22:95–102. doi: 10.1007/s11771-015-2499-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.