302
Views
10
CrossRef citations to date
0
Altmetric
Articles

Development of a single-stage mainstream anammox process using a sponge-bed trickling filter

ORCID Icon, , , & ORCID Icon
Pages 3036-3047 | Received 28 Sep 2019, Accepted 15 Jan 2020, Published online: 04 Feb 2020

References

  • van Lier JB, van der Zee FP, Frijters CTMJ, et al. Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment. Rev Environ Sci Biotechnol. 2015;14(4):681–702. doi: 10.1007/s11157-015-9375-5
  • Tandukar M, Ohashi A, Harada H. Performance comparison of a pilot-scale UASB and DHS system and activated sludge process for the treatment of municipal wastewater. Water Res. 2007;41(12):2697–2705. doi: 10.1016/j.watres.2007.02.027
  • Almeida PGS, Marcus AK, Rittmann BE, et al. Performance of plastic- and sponge-based trickling filters treating effluents from an UASB reactor. Water Sci Tech. 2013;67(5):1034–1042. doi: 10.2166/wst.2013.658
  • Ribeiro TB, Almeida PGS, Volcke E, et al. Tricking filters following anaerobic sewage treatment: state of the art and perspectives. Environ Sci Water Res Technol. 2018;4(11):1721–1738. doi: 10.1039/C8EW00330K
  • Machdar I., Harada H., Ohashi A., et al. A novel and cost-effective sewage treatment system consisting of UASB pre-treatment and aerobic post-treatment units for developing countries. Water Sci Tech. 1997;36(12):189. doi: 10.2166/wst.1997.0447
  • Onodera T, Tandukar M, Sugiyana D, et al. Development of a sixth-generation down-flow hanging sponge (DHS) reactor using rigid sponge media for post-treatment of UASB treating municipal sewage. Bioresour Technol. 2014;152:93–100. doi: 10.1016/j.biortech.2013.10.106
  • Onodera T, Okubo T, Uemura S, et al. Long-term performance evaluation of down-flow hanging sponge reactor regarding nitrification in a full-scale experiment in India. Bioresour Technol. 2016;204:177–184. doi: 10.1016/j.biortech.2016.01.005
  • Okubo T, Kubota K, Yamaguchi T, et al. Development of a new non-aeration-based sewage treatment technology: performance evaluation of a full-scale down-flow hanging sponge reactor employing third-generation sponge carriers. Water Res. 2016;102:138–146. doi: 10.1016/j.watres.2016.06.035
  • Hatamoto M, Okubo T, Kubota K, et al. Characterization of downflow hanging sponge reactors with regard to structure, process function, and microbial community composition. Appl Microbiol Biotechnol. 2018. In press.
  • Araki N, Ohashi A, Machdar I, et al. Behaviors of nitrifiers in a novel biofilm reactor employing hanging sponge-cubes as attachment site. Water Sci Tech. 1999;39(7):23–31. doi: 10.2166/wst.1999.0319
  • Uemura S, Suzuki S, Abe K, et al. Removal of organic substances and oxidation of ammonium nitrogen by a down-flow hanging sponge (DHS) reactor under high salinity conditions. Bioresour Technol. 2010;101(14):5180–5185. doi: 10.1016/j.biortech.2010.02.040
  • Kubota K, Hayashi M, Matsunaga K, et al. Microbial community composition of a down-flow hanging sponge (DHS) reactor combined with an up-flow anaerobic sludge blanket (UASB) reactor for the treatment of municipal sewage. Bioresour Technol. 2014;151:144–150. doi: 10.1016/j.biortech.2013.10.058
  • Mac Conell EFA, Almeida PGS, Martins KEL, et al. Bacterial community involved in the nitrogen cycle in a down-flow sponge-based trickling filter treating UASB effluent. Water Sci Tech. 2015;72(1):116–122. doi: 10.2166/wst.2015.154
  • Watari T, Mai TC, Tanikawa D, et al. Development of downflow hanging sponge (DHS) reactor as post treatment of existing combined anaerobic tank treating natural rubber processing wastewater. Water Sci Tech. 2017;75(1):57–68. doi: 10.2166/wst.2016.487
  • Cao Y, van Loosdrecht MC, Daigger GT. Mainstream partial nitritation–anammox in municipal wastewater treatment: status, bottlenecks, and further studies. Appl Microbiol Biotechnol. 2017;101(4):1365–1383. doi: 10.1007/s00253-016-8058-7
  • Chuang HP, Ohashi A, Imachi H, et al. Effective partial nitrification to nitrite by down-flow hanging sponge reactor under limited oxygen condition. Water Res. 2007;41(2):295–302. doi: 10.1016/j.watres.2006.10.019
  • Uemura S., Suzuki S., Abe K., et al. Partial nitrification in an airlift activated sludge reactor with experimental and theoretical assessments of the pH gradient inside the sponge support medium. Int J Environ Res. 2011;5(1):33–40.
  • Guillén JS, Jayawardana LKMCB, Lopez-Vazquez CM, et al. Autotrophic nitrogen removal over nitrite in a sponge-bed trickling filter. Bioresour Technol. 2015;187:314–325. doi: 10.1016/j.biortech.2015.03.140
  • Guillén JS, Guardado PC, Lopez-Vazquez CM, et al. Anammox cultivation in a closed sponge-bed trickling filter. Bioresour Technol. 2015;186:252–260. doi: 10.1016/j.biortech.2015.03.073
  • Machdar I, Sekiguchi Y, Sumino H, et al. Combination of a UASB reactor and a curtain type DHS (downflow hanging sponge) reactor as a cost-effective sewage treatment system for developing countries. Water Sci Tech. 2000;42(3–4):83–88. doi: 10.2166/wst.2000.0362
  • Uemura S, Okubo T, Maeno K, et al. Evaluation of water distribution and oxygen mass transfer in sponge support media for a down-flow hanging sponge reactor. Int J Environ Res. 2016;10(2):265–272.
  • Hoekstra M., de Weerd F. A., Kleerebezem R., et al. Deterioration of the anammox process at decreasing temperatures and long SRTs. Environ Technol. 2018;39(5):658–668. doi: 10.1080/09593330.2017.1309078
  • APHA. Standard methods for the Examination of water and wastewater. 21st ed.. Washington (DC): American Public Health Association; 2005.
  • Japan Sewage Works Association. Chapter 2, Characterization of aeration tank, wastewater Examination method, volume 1. Japan Sewage Works Association; 2012; 690–701. (in Japanese).
  • Caporaso JG, Lauber CL, Walters WA, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6(8):1621–1624. doi: 10.1038/ismej.2012.8
  • Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Meth. 2010;7(5):335–336. doi: 10.1038/nmeth.f.303
  • Tawfik A, Ohashi A, Harada H. Sewage treatment in a combined up-flow anaerobic sludge blanket (UASB)–down-flow hanging sponge (DHS) system. Biochem Eng J. 2006;29(3):210–219. doi: 10.1016/j.bej.2005.11.018
  • Jaroszynski LW, Cicek N, Sparling R, et al. Impact of free ammonia on anammox rates (anoxic ammonium oxidation) in a moving bed biofilm reactor. Chemosphere. 2012;88(2):188–195. doi: 10.1016/j.chemosphere.2012.02.085
  • Fernández I, Dosta J, Fajardo C, et al. Short- and long-term effects of ammonium and nitrite on the anammox process. J. Environ. Manage. 2012;95:170–174. doi: 10.1016/j.jenvman.2010.10.044
  • Courtens EN, Boon N, De Clippeleir H, et al. Control of nitratation in an oxygen-limited autotrophic nitrification/denitrification rotating biological contactor through disc immersion level variation. Bioresour. Technol. 2014;155:182–188. doi: 10.1016/j.biortech.2013.12.108
  • Garcia-Ochoa F., Gomez E. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv. 2009;27(2):153–176. doi: 10.1016/j.biotechadv.2008.10.006
  • Hatamoto M, Yamamoto H, Kindaichi T, et al. Biological oxidation of dissolved methane in effluents from anaerobic reactors using a down-flow hanging sponge reactor. Water Res. 2010;44(5):1409–1418. doi: 10.1016/j.watres.2009.11.021
  • Hatamoto M, Miyauchi T, Kindaichi T, et al. Dissolved methane oxidation and competition for oxygen in down-flow hanging sponge reactor for post-treatment of anaerobic wastewater treatment. Bioresour. Technol. 2011;102(22):10299–10304. doi: 10.1016/j.biortech.2011.08.099
  • Tawfik A, Zaki DF, Zahran MK. Degradation of reactive dyes wastewater supplemented with cationic polymer (Organo Pol.) in a down flow hanging sponge (DHS) system. J Ind Eng Chem. 2014;20(4):2059–2065. doi: 10.1016/j.jiec.2013.09.031
  • Nomoto N, Hatamoto M, Hirakata Y, et al. Defining microbial community composition and seasonal variation in a sewage treatment plant in India using a down-flow hanging sponge reactor. Appl Microbiol Biotechnol. 2018;102(10):4381–4392. doi: 10.1007/s00253-018-8864-1
  • Wang X, Hu M, Xia Y, et al. Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Appl Environ Microbiol. 2012;78(19):7042–7047. doi: 10.1128/AEM.01617-12
  • Purkhold U, Pommerening-Röser A, Juretschko S, et al. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol. 2000;66(12):5368–5382. doi: 10.1128/AEM.66.12.5368-5382.2000
  • Erguder TH, Boon N, Wittebolle L, et al. Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev. 2009;33(5):855–869. doi: 10.1111/j.1574-6976.2009.00179.x
  • Hatzenpichler R, Lebedeva EV, Spieck E, et al. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci USA. 2008;105(6):2134–2139. doi: 10.1073/pnas.0708857105
  • Limpiyakorn T, Sonthiphand P, Rongsayamanont C, et al. Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Bioresour Technol. 2011;102(4):3694–3701. doi: 10.1016/j.biortech.2010.11.085
  • Huang X, Sun K, Wei Q, et al. One-stage partial nitritation and anammox in membrane bioreactor. Environ Sci Pollut Res. 2016;23(11):11149–11162. doi: 10.1007/s11356-016-6309-x
  • Lee CS, Kim KK, Aslam Z, et al. Rhodanobacter thiooxydans sp. nov., isolated from a biofilm on sulfur particles used in an autotrophic denitrification process. Int J Syst Evol Microbiol. 2007;57(8):1775–1779. doi: 10.1099/ijs.0.65086-0
  • Prakash O, Green SJ, Jasrotia P, et al. Rhodanobacter denitrificans sp. nov. isolated from nitrate-rich zones of a contaminated aquifer. Int J Syst Evol Microbiol. 2012;62(10):2457–2462. doi: 10.1099/ijs.0.035840-0
  • Kindaichi T, Ito T, Okabe S. Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. Appl Environ Microbiol. 2004;70(3):1641–1650. doi: 10.1128/AEM.70.3.1641-1650.2004
  • Okabe S, Kindaichi T, Ito T. Fate of 14C-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms. Appl Environ Microbiol. 2005;71(7):3987–3994. doi: 10.1128/AEM.71.7.3987-3994.2005
  • Roots P, Wang Y, Rosenthal AF, et al. Comammox Nitrospira are the dominant ammonia oxidizers in a mainstream low dissolved oxygen nitrification reactor. Water Res. 2019;157(15):396–405. doi: 10.1016/j.watres.2019.03.060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.