205
Views
13
CrossRef citations to date
0
Altmetric
Articles

Prediction of methyl orange removal by iron decorated activated carbon using an artificial neural network

, &
Pages 3288-3303 | Received 24 Sep 2019, Accepted 28 Jan 2020, Published online: 11 Feb 2020

References

  • Tsuboy MS, Angeli JPF, Mantovani MS, et al. Genotoxic, mutagenic and cytotoxic effects of the commercial dye CI disperse blue 291 in the human hepatic cell line HepG2. Toxicol in Vitro. 2007;21(8):1650–1655. doi: 10.1016/j.tiv.2007.06.020
  • Vinitnantharat S, Chartthe W, Pinisakul A. Toxicity of reactive red 141 and basic red 14 to Algae and Waterfleas. Water Sci Technol. 2008;58(6):1193–1198. doi: 10.2166/wst.2008.476
  • Ghaedi AM, Vafaei A. Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: a review. Adv Colloid Interface Sci. 2017;245:20–39. doi: 10.1016/j.cis.2017.04.015
  • Alslaibi TM, Abustan I, Ahmad M, et al. Cadmium removal from aqueous solution using microwaved olive stone activated carbon. J Environ Chem Eng. 2013;1(3):589–599. doi: 10.1016/j.jece.2013.06.028
  • Jaafarzadeh N, Baboli Z, Noorimotlagh Z, et al. Efficient adsorption of bisphenol A from aqueous solutions using low-cost activated carbons produced from natural and synthetic carbonaceous materials. Desalin Water Treat. 2019;154:177–187. doi: 10.5004/dwt.2019.23897
  • Mirzaei N, Ghaffari HR, Sharafi K, et al. Modified natural zeolite using ammonium quaternary based material for acid red 18 removal from aqueous solution. J Environ Chem Eng. 2017;5(4):3151–3160. doi: 10.1016/j.jece.2017.06.008
  • El-Qada EN, Allen SJ, Walker GM. Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: a study of equilibrium adsorption isotherm. Chem Eng J. 2006;124:103–110. doi: 10.1016/j.cej.2006.08.015
  • Al-Ghouti MA, Li J, Salamh Y, et al. Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. J Hazard Mater. 2010;176(1–3):510–520. doi: 10.1016/j.jhazmat.2009.11.059
  • Ozbelge TA, Ozbeze OH, Baskaya SZ. Heavy metal adsorption onto agro-based waste materials. Chem Eng Process. 2002;41:719–730. doi: 10.1016/S0255-2701(01)00189-1
  • Pasalari H, Ghaffari HR, Mahvi AH, et al. Activated carbon derived from date stone as natural adsorbent for phenol removal from aqueous solution. Desalin Water Treat. 2017;72:406–417. doi: 10.5004/dwt.2017.20686
  • Ghaedi M, Hassanzadeh A, NasiriKokhdan S. Multiwalled carbon nanotubes as adsorbents for the kinetic and equilibrium study of the removal of alizarin red S and Morin. J Chem Eng Data. 2011;56:2511–2520. doi: 10.1021/je2000414
  • Mukherjee T, Ghosh SK, Rahaman M. Determining the quality of activated carbon using L16 Taguchi method through waste tyre recycling. Springer Book Volume 3. Waste Water Recycl Manage. 2018. doi:10.1007/978-981-13-2619-6.
  • Kalyanmoy D. Optimizations for engineering design – algorithm and examples. New Delhi: Prentice Hall of India; 1996, pp. 290–333.
  • Hosseini Nia R, Ghaedi M, Ghaedi AM. Modeling of reactive orange 12 (RO 12) adsorption onto gold nanoparticle-activated carbon using artificial neural network optimization based on an imperialist competitive algorithm. J Mol Liq. 2014;195:219–229. doi: 10.1016/j.molliq.2014.02.026
  • Karimi H, Ghaedi M. Application of artificial neural network and genetic algorithm to modeling and optimization of removal of methylene blue using activated carbon. J Ind Eng Chem. 2014;20(4):2471–2476. doi: 10.1016/j.jiec.2013.10.028
  • Zeinali N, Ghaedi M, Shafie G. Competitive adsorption of methylene blue and brilliant green onto graphite oxide nano-particle following: derivative spectrophotometric and principal component-artificial neural network model methods for their simultaneous determination. J Ind Eng Chem. 2014;20:3550–3558. doi: 10.1016/j.jiec.2013.12.048
  • Kakavandi B, Kalantary RR, Farzadkia M, et al. Enhanced chromium (VI) removal using activated carbon modified by zero valent iron and silver bimetallic nanoparticles. J Environ Health Sci Eng. 2014;12(1):115. doi: 10.1186/s40201-014-0115-5
  • Azari A, Gholami M, Torkshavand Z, et al. Evaluation of basic violet 16 adsorption from aqueous solution by magnetic zero valent iron-activated carbon nanocomposite using response surface method: isotherm and kinetic studies. J Mazandaran Univ Med Sci. 2015;24(121):333–347.
  • Hoda N, Bayram E, Ayranci E. Kinetic and equilibrium studies on the removal of acid dyes from aqueous solutions by adsorption onto activated carbon cloth. J Hazard Mater B. 2006;137:344–351. doi: 10.1016/j.jhazmat.2006.02.009
  • Kumar KV, Porkodi K. Modelling the solid–liquid adsorption processes using artificial neural networks trained by pseudo second order kinetics. Chem Eng J. 2009;148:20–25. doi: 10.1016/j.cej.2008.07.026
  • Ahn CW. Advances in evolutionary algorithms: theory design and practice. Berlin Heidelberg: Springer Verlag; 2006.
  • Montgomery DC. Design and analysis of experiments. 7th ed. Hoboken (NJ): John Wiley & Sons, Inc; 2007.
  • Zhang Y, Xu J, Yuan Z, et al. Artificial neural network-genetic algorithm based optimization for the immobilization of cellulase on the smart polymer Eudragit L-100. Bioresour Technol. 2010;101:3153–3158. doi: 10.1016/j.biortech.2009.12.080
  • Carlos A, Filho P, Filho RM. Hybrid training approach for artificial neural networks using genetic algorithms for rate of reaction estimation: application to industrial methanol oxidation to formaldehyde on silver catalyst. Chem Eng J. 2010;157:501–508. doi: 10.1016/j.cej.2009.12.045
  • Soleymani AR, Saiena J, Bayat H. Artificial neural networks developed for prediction of dye decolorization efficiency with UV/K2S2O8 process. Chem Eng J. 2011;170:29–35. doi: 10.1016/j.cej.2011.03.021
  • Karimi H, Yousefi F, Rahimi MR. Correlation of viscosity in nanofluids using genetic algorithm-neural network (GA-NN). Heat Mass Transf. 2011;47:1417–1425. doi: 10.1007/s00231-011-0802-z
  • Karimi H, Yousefi F. Application of artificial neural network–genetic algorithm (ANN–GA) to correlation of density in nanofluids. Fluid Phase Equilibr. 2012;336:79–83. doi: 10.1016/j.fluid.2012.08.019
  • Sivapathasekaran C, Mukherjee S, Ray A, et al. Artificial neural network modeling and genetic algorithm based medium optimization for the improved production of marine biosurfactant. Bioresour Technol. 2010;101:2884–2887. doi: 10.1016/j.biortech.2009.09.093
  • Mesdaghinia A, Azari A, Nodehi RN, et al. Removal of phthalate esters (PAEs) by zeolite/Fe3O4: investigation on the magnetic adsorption separation, catalytic degradation and toxicity bioassay. J Mol Liq. 2017;233:378–390. doi: 10.1016/j.molliq.2017.02.094
  • Azari A, Mahmoudian MH, Niari MH, et al. Rapid and efficient ultrasonic assisted adsorption of diethyl phthalate onto FeIIFe2IIIO4@ GO: ANN-GA and RSM-DF modeling, isotherm, kinetic and mechanism study. Microchem J. 2019;150:104144. doi: 10.1016/j.microc.2019.104144
  • Li WH, Yue QY, Gao BY, et al. Preparation and utilization of sludge-based activated carbon for the adsorption of dyes from aqueous solutions. Chem Eng J. 2011;171:320–327. doi: 10.1016/j.cej.2011.04.012
  • Soleimani R, Shoushtari NA, Mirza B, et al. Experimental investigation, modeling and optimization of membrane separation using artificial neural network and multi-objective optimization using genetic algorithm. Chem Eng Res Des. 2012;91:883–903. doi: 10.1016/j.cherd.2012.08.004
  • Gupta VK, Srivastava SK, Mohan D. Equilibrium uptake, sorption dynamics, process optimization and column operations for the removal and recovery of malachite green from waste water using activated carbon and activated slag. Ind Eng Chem Res. 1997;36:2207–2218. doi: 10.1021/ie960442c
  • Choy KKH, Porter JF, McKay G. Intraparticle diffusion in single and multicomponent acid dye adsorption from wastewater onto carbon. Chem Eng J. 2004;103:133–145. doi: 10.1016/j.cej.2004.05.012
  • Bellifa A, Makhlouf M, Boumila ZH. Comparative study of the adsorption of methyl orange by bentonite and activated carbon. Acta Physica Polinica A. 2017;132:466. doi: 10.12693/APhysPolA.132.466
  • El Bakouri H, Usero J, Morillo J, et al. Adsorptive features of acid-treated olive stones for drin pesticides: equilibrium, kinetic and thermodynamic modeling studies. Bioresour Technol. 2009;100:4147–4155. doi: 10.1016/j.biortech.2009.04.003
  • Noorimotlagh Z, Mirzaee SA, Martinez SS, et al. Adsorption of textile dye in activated carbons prepared from DVD and CD wastes modified with multi-wall carbon nanotubes: equilibrium isotherms, kinetics and thermodynamic study. Chem Eng Res Des. 2019;141:290–301. doi: 10.1016/j.cherd.2018.11.007
  • Noorimotlagh Z, Darvishi Cheshmeh Soltani R, Khataee AR, et al. Adsorption of a textile dye in aqueous phase using mesoporous activated carbon prepared from Iranian milk vetch. J Taiwan Ins Chem Eng. 2014;45(4):1783–1791. doi: 10.1016/j.jtice.2014.02.017
  • Chang Q, Lin W, Ying WC. Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water. J Hazard Mater. 2010;184(1–3):515–522. doi: 10.1016/j.jhazmat.2010.08.066
  • Shah I, Adnan R, Ngah WSW, et al. Iron impregnated activated carbon as an efficient adsorbent for the removal of methylene blue: regeneration and kinetics studies. PLoS One. 2015;10(4):e0122603. doi: 10.1371/journal.pone.0122603
  • Kadirova ZC, Hojamberdiev M, Katsumata KI, et al. Preparation of iron oxide-impregnated spherical granular activated carbon-carbon composite and its photocatalytic removal of methylene blue in the presence of oxalic acid. J Environ Sci Health Part A. 2014;49(7):763–769. doi: 10.1080/10934529.2014.882185
  • Nourmoradi H, Ghiasvand AR, Noorimotlagh Z. Removal of methylene blue and acid orange 7 from aqueous solutions by activated carbon coated with zinc oxide (ZnO) nanoparticles: equilibrium, kinetic, and thermodynamic study. Desalin Water Treat. 2015;55(1):252–262. doi: 10.1080/19443994.2014.914449

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.