197
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Estimation of long-term methane emissions from Mechanical-Biological Treatment waste through biomethane potential test

ORCID Icon & ORCID Icon
Pages 3835-3847 | Received 22 Jan 2021, Accepted 13 May 2021, Published online: 20 Jun 2021

References

  • Vaverková MD, Elbl J, Voběrková S, et al. Composting versus mechanical–biological treatment: does it really make a difference in the final product parameters and maturity. Waste Manag. 2020;106:173–183.
  • Fei X, Zekkos D, Raskin L. Quantification of parameters influencing methane generation due to biodegradation of municipal solid waste in landfills and laboratory experiments. Waste Manag. 2016;55:276–287.
  • Grzesik K, Malinowski M. Life cycle assessment of mechanical-biological treatment of mixed municipal waste. Environ Eng Sci 2017;34:207–220.
  • Adani F, Tambone F, Genevini PL, et al. Stabilization of municipal solid waste fraction: a laboratory approach. Technol. Environ. 1998;4:2–8.
  • Jędrczak A. A Comparison of waste stability indices for mechanical–biological waste treatment and composting plants. Int J Environ. Res. Public Health. 2018;15(11):2585. doi:10.3390/ijerph15112585.
  • Adani F, Tambone F, Gotti A. Biostabilization of municipal solid waste. Waste Manag. 2004;24:775–783.
  • Cossu R, Raga R. Test methods for assessing the biological stability of biodegradable waste. Waste Manag. 2008;28:381–388.
  • Scaglia B, Confalonieri R, D’Imporzano G, et al. Estimating biogas production of biologically treated municipal solid waste. Bioresour Technol 2010;101:945–952.
  • Lornage R, Redon E, Lagier T, et al. Performance of a low cost MBT prior to landfilling: study of the biological treatment of size reduced MSW without mechanical sorting. Waste Manag. 2007;27:1755–1764.
  • Ponsá S, Gea T, Alerm L, et al. Comparison of aerobic and anaerobic stability indices through a MSW biological treatment process. Waste Manag. 2008;28:2735–2742.
  • Barrena R, D’Imporzano G, Ponsá S, et al. In search of a reliable technique for the determination of the biological stability of the organic matter in the mechanical–biological treated waste. J Hazard Mater 2009;162:1065–1072.
  • De Gioannis G, Muntoni A, Cappai G, et al. Landfill gas generation after mechanical biological treatment of municipal solid waste. estimation of gas generation rate constants. Waste Manag. 2009;29:1026–1034.
  • Müller W, Fricke K, Vogtmann H. Biodegradation of organic matter during mechanical biological treatment of MSW. Compost Sci Util 1998;6:42–52.
  • Germany Institut for Normative (Deutsches Institut für Normung). DIN 38414-8. German Standardised Procedures for Testing of Water, Wastewater and Sludge; Sludge and Sediments (Group S); Determination of Fermentation Behaviour (S 8). 1985.
  • Schievano A, Pognani M, D’Imporzano G, et al. Predicting anaerobic biogasification potential of ingestates and digestates of a full-scale biogas plant using chemical and biological parameters. Bioresour Technol 2008;99:8112–8117.
  • Angelidaki I, Alves M, Bolzonella D, et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 2009;59:927–934.
  • Holliger C, Alves M, Andrade D, et al. Towards a standardization of biomethane potential tests. Water Sci Technol 2016;74:2515–2522.
  • Pantini S, Verginelli I, Lombardi F, et al. Assessment of biogas production from MBT waste under different operating conditions. Waste Manag. 2015;43:37–49.
  • USEPA. Landfill Gas emissions model (LandGEM) version 3.02 user’s guide. Alexander, A., C. Burklin, and A. Singleton. EPA; 600, R-05/047 (NTIS PB2006-102386). U.S. Environmental Protection Agency, Washington, DC; 2005.
  • IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan. ISBN 4-88788-032-4. Vol. 5. Chapter 3.
  • Majdinasab A, Zhang Z, Yuan Q. Modelling of landfill gas generation: a review. Rev. Environ. Sci. Biotechnol. 2017;16:361–380.
  • Thompson S, Sawyer J, Bonam R, et al. Building a better methane generation model: validating models with methane recovery rates from 35 Canadian landfills. Waste Manag. 2009;29:2085–2091.
  • Amini HR, Reinhart DR, Niskanen A. Comparison of first-order-decay modeled and actual field measured municipal solid waste landfill methane data. Waste Manag. 2013;33:2720–2728.
  • Heyer K U, Hupe K, Stegmann R. Methane emissions from MBT landfills. Waste Manag. 2013;33:1853–1860.
  • Lee U, Han J, Wang M. Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways. J Clean Prod 2017;166:335–342.
  • Gollapalli M, Kota SH. Methane emissions from a landfill in north-east India: performance of various landfill gas emission models. Environ Pollut 2018;234:174–180.
  • Cho HS, Moon HS, Kim JY. Effect of quantity and composition of waste on the prediction of annual methane potential from landfills. Bioresour Technol 2012;109:86–92.
  • Caldas Á, Machado S, Karimpour-Fard M, et al. MSW characteristics and landfill gas generation performance in tropical regions. Electron J Geotech Eng 2014;19:8545–8560.
  • Krause MJ, Chickering G, Townsend TG, et al. Critical review of the methane generation potential of municipal solid waste. Crit Rev Environ Sci Technol 2016;46:1172–1182.
  • Chynoweth DP, Turick CE, Owens JM, et al. Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenergy. 1993;5:95–111.
  • Cho J K, Park S C, Chang HN. Biochemical methane potential and solid state anaerobic digestion of Korean food wastes. Bioresour Technol 1995;52:245–253.
  • Eleazer WE, Odle WS, Wang YS, et al. Biodegradability of municipal solid waste components in laboratory-scale landfills. Environ Sci Technol 1997;31:911–917.
  • Wang X, Padgett JM, De La Cruz FB, et al. Wood biodegradation in laboratory-scale landfills. Environ Sci Technol 2011;45:6864–6871.
  • Wang X, De la Cruz FB, Ximenes F, et al. Decomposition and carbon storage of selected paper products in laboratory-scale landfills. Sci Total Environ 2015b;532:70–79.
  • Jeong S. (2016). Verification of methodologies and estimation of IPCC model parameters for solid waste landfills; PhD thesis; Seoul National University. https://hdl.handle.net/10371/118739.
  • Wang X, Barlaz MA. Decomposition and carbon storage of hardwood and softwood branches in laboratory-scale landfills. Sci Total Environ 2016;557–558:355–362.
  • Bayard R, Araújo Morais J, Ducom G, et al. Assessment of the effectiveness of an industrial unit of mechanical–biological treatment of municipal solid waste. J. Hazard. Mater. J. 2010;175:23–32.
  • Hansen TL, Schmidt JE, Angelidaki I, et al. Method for determination of methane potentials of solid organic waste. Waste Manag. 2004;24:393–400.
  • USEPA. 2001. Methods 1684. Total, Fixed, and Volatile Solids in Water, Solids, and Biosolids 2001.
  • APHA. APHA: standard methods for the examination of water and wastewater. 20th ed. Washington (DC): American Public Health Association; 1999.
  • USEPA. 1995. Test methods for the evaluation of solid waste, SW-846, Method 9040C, Soil and residues pH.
  • Aquino S, Chernicharo C, Foresti E, et al. Metodologias para determinação da atividade metanogênica específica (ame) em lodos anaeróbios. Eng. Sanit. e Ambient. 2007;12:192–201.
  • Córdoba V, Fernández M, Santalla E. The effect of different inoculums on anaerobic digestion of swine wastewater. J. Environ. Chem. Eng. 2016;4:115–122.
  • Park JK, Chong YG, Tameda K, et al. Methods for determining the methane generation potential and methane generation rate constant for the FOD model: a review. Waste Manag Res 2018;36:200–220.
  • Sanderson J, Hettiaratchi P, Hunte C, et al. Methane balance of a bioreactor landfill in latin america. J Air Waste Manag Assoc 2008;58:620–628.
  • Machado SL, Carvalho MF, Gourc JP, et al. Methane generation in tropical landfills: simplified methods and field results. Waste Manag. 2009;29:153–161.
  • Jeon EJ, Bae SJ, Lee DH, et al. Methane generation potential and biodegradability of MSW components. Proceedings Sardinia 2007, Eleventh International Waste Management and Landfill Symposium. 2007.
  • Amini HR, Reinhart DR, Mackie KR. Determination of first-order landfill gas modeling parameters and uncertainties. Waste Manag. 2012;32:305–316.
  • Garg A, Achari G, Joshi RC. A model to estimate the methane generation rate constant in sanitary landfills using fuzzy synthetic evaluation. Waste Manag Res 2006;24:363–375.
  • De la Cruz F, Barlaz MA. Estimation of waste component-specific landfill decay rates using laboratory-scale decomposition data. Environ Sci Technol 2010;44:4722–4728.
  • USEPA. 2004. Quantification for Exposure: Development of the Emissions Inventory for the Inhalation Risk Assessment (Chapter 7) 2004; Washington, DC.
  • Elwell DL, Keener HM, Hoitink HAJ, et al. Pilot and full scale evaluations of leaves as an amendment in sewage sludge composting. Compost Sci Util 1994;2:55–74.
  • Zhang L, Lee YW, Jahng D. Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements. Bioresour Technol 2011;102:5048–5059.
  • Vogt GM, Liu HW, Kennedy KJ, et al. Super blue box recycling (SUBBOR) enhanced two-stage anaerobic digestion process for recycling municipal solid waste: laboratory pilot studies. Bioresour Technol 2002;85:291–299.
  • Nielfa A, Cano R, Fdz-Polanco M. Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol. Reports. 2015a;5:14–21.
  • Esposito G, Frunzo L, Panico A, et al. Enhanced bio-methane production from co-digestion of different organic wastes. Environ Technol 2012;33:2733–2740.
  • Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 2008;99:4044–4064.
  • Nielfa A, Cano R, Vinot M, et al. Anaerobic digestion modeling of the main components of organic fraction of municipal solid waste. Process Saf Environ Prot 2015b;94:180–187.
  • Pellera FM, Gidarakos E. Effect of substrate to inoculum ratio and inoculum type on the biochemical methane potential of solid agroindustrial waste. J. Environ. Chem. Eng. 2016;4:3217–3229.
  • Ten Brummeler E, Koster IW. Enhancement of dry anaerobic batch digestion of the organic fraction of municipal solid waste by an aerobic pretreatment step. Biol. Wastes. 1990;31:199–210.
  • Adani F, Scatigna L, Genevini P. Biostabilization of mechanically separated municipal solid waste fraction. Waste Manag Res 2000;18:471–477.
  • Gerassimidou S, Evangelou A, Komilis D. Aerobic biological pretreatment of municipal solid waste with a high content of putrescibles: effect on landfill emissions. Waste Manag Res 2013;31:783–791.
  • Fricke K, Santen H, Wallmann R. Comparison of selected aerobic and anaerobic procedures for MSW treatment. Waste Manag. 2005;25:799–810.
  • Bayard R, Benbelkacem H, Gourdon R, et al. Characterization of selected municipal solid waste components to estimate their biodegradability. J Environ Manage 2018;216:4–12.
  • Wang D, Ai P, Yu L, et al. Comparing the hydrolysis and biogas production performance of alkali and acid pretreatments of rice straw using two-stage anaerobic fermentation. Biosyst Eng 2015a;132:47–55.
  • Bogner J, Spokas K. Landfill CH4: rates, fates, and role in global carbon cycle. Chemosphere 1993;26:369–386.
  • Marcolini I. Análisis del efecto del tratamiento mecánico biológico en las emisiones de gases de efecto Invernadero en la etapa de disposición final de los residuos sólidos urbanos Estudio de caso planta TMB-Norte III Tesis Gestión Ambiental (maestría). Buenos Aires: Instituto Tecnológico de Buenos Aires; 2018; http://ri.itba.edu.ar/handle/123456789/1174.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.