129
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Investigation of a biosurfactant-enhanced electrokinetic method and its effect on the potentially toxic trace elements in waterways sediments

ORCID Icon & ORCID Icon
Pages 3870-3887 | Received 05 Mar 2021, Accepted 20 May 2021, Published online: 11 Jun 2021

References

  • Dubois V, Abriak NE, Zentar R, et al. The use of marine sediments as a pavement base material. Waste Manag. 2009;29(2):774–782. doi:10.1016/j.wasman.2008.05.004.
  • Xu W, Shafi M, Penttinen P, et al. Bioavailability of heavy metals in contaminated soil as affected by different mass ratios of biochars. Environ Technol. 2020;41(25):3329–3337.
  • Wu S, Xie F, Chen S, et al. The removal of Pb (II) and Cd (II) with hydrous manganese dioxide: mechanism on zeta potential and adsorption behavior. Environ Technol. 2020;41(24):3219–3232.
  • Amrate S. Etude du transport d’ions dans des milieux poreux sous l’action d’un champ électrique. Application à la décontamination de sols pollués. Université des Siences et de la Technologie Houari Boumediene. Thèse de doctorat. Bab Ezzouar; 2005.
  • Kribi S. Décomposition des matières organiques et stabilisation des métaux lourds dans les sédiments de dragage. Institut National des Sciences Appliquées de Lyon. Thèse de doctorat. Lyon; 2005
  • Mamindy Pajany Y, Hurel C, Marmier N, et al. Tests de lixiviation et de stabilisation d’un sédiment portuaire contaminé à l’arsenic. Eur J Environ Civ Eng. 2010;14(2):233–251. doi:10.1080/19648189.2010.9693215.
  • Mamindy-Pajany Y, Hurel C, Geret F, et al. Comparison of mineral-based amendments for ex-situ stabilization of trace elements (As, Cd, Cu, Mo, Ni, Zn) in marine dredged sediments: A pilot-scale experiment. J Hazard Mater. 2013;252–253:213–219. doi:10.1016/j.jhazmat.2013.03.001.
  • Tyagi RD, Blais JF, Meunier N, et al. Biolixiviation des metaux lourds et stabilisation des boues d’epuration: essai en bioreacteur opere en mode cuvee. Can J Civ Eng. 1993;20:57–64.
  • Chen SY, Lin JG. Bioleaching of heavy metals from sediment: significance of pH. Chemosphere. 2001;44(5):1093–1102. doi:10.1016/S0045-6535(00)00334-9.
  • Gan M, Jie S, Li M, et al. Bioleaching of multiple metals from contaminated sediment by moderate thermophiles. Mar Pollut Bull. 2015;97: 47–55.
  • Licinio A. Phyto-extraction du zinc et de l’arsenic par différentes espèces de plantes. Université de Montréal. Montréal; 2017.
  • Benamar A, Baraud F, Alem A. Traitement des sédiments de dragage : un enjeu du développement durable. 25e rencontres de l’AUGC; 2007, p. 7.
  • Ammami MT. Contribution à l’étude des processus électrocinétiques appliqués aux sédiments de dragage. Université du Havre. Thèse de doctorat. Le Havre; 2013.
  • Song Y, Benamar A, Mezazigh S, et al. Extraction de métaux lourds des sédiments par méthode électrocinétique. IIIèmes Journées Nationales Génie Côtier – Génie Civil. Dunkerque. 2014: 1055–1062.
  • Mahmoud A, Olivier J, Vaxelaire J, et al. Electrical field: A historical review of its application and contributions in wastewater sludge dewatering. Water Res. 2010;44(8):2381–2407. doi:10.1016/j.watres.2010.01.033.
  • Song Y. Traitement électrocinétique des sédiments de dragage et valorisation par solidification/stabilisation. Université du Havre. Thèse de doctorat. Le Havre; 2017.
  • Li T, Yuan S, Wan J, et al. Pilot-scale electrokinetic movement of HCB and Zn in real contaminated sediments enhanced with hydroxypropyl-β-cyclodextrin. Chemosphere. 2009;76(9):1226–1232. doi:10.1016/j.chemosphere.2009.05.045.
  • Yang JS, Kwon MJ, Choi J, et al. The transport behavior of As, Cu, Pb, and Zn during electrokinetic remediation of a contaminated soil using electrolyte conditioning. Chemosphere. 2014;117:79–86. doi:10.1016/j.chemosphere.2014.05.079.
  • Zhang H, Ma Q, Su W, et al. On the dewatering of electroosmotic soil using intermittent current incorporated with calcium chloride. Environ Technol. 2021;42(3):468–478.
  • Acar YB, Alshawabkeh AN. Principles of electrokinetic remediation. Environ Sci Technol. 1993;27(13):2638–2647. doi:10.1021/es00049a002.
  • Acar YB, Alshawabkeh AN, Gale RJ. Fundamentals of extracting species from soils by electrokinetics. Waste Manag. 1993;13(2):141–151. doi:10.1016/0956-053X(93)90006-I.
  • Shapiro AP, Probstein RF. Removal of contaminants from saturated clay by electroosmosis. Environ Sci Technol. 1993;27(2):283–291. doi:10.1021/es00039a007.
  • Pamukcu S, Wittle JK. Electrokinetic treatment of contaminated soils, sludges, and lagoons. Final report; 1993. doi: 10.2172/10185835.
  • Acar YB, Gale RJ, Alshawabkeh AN, et al. Electrokinetic remediation: basics and technology status. J Hazard Mater. 1995;40(2):117–137. doi:10.1016/0304-3894(94)00066-P.
  • Cameselle C. Enhancement of electro-osmotic flow during the electrokinetic treatment of A contaminated soil. Electrochim Acta. 2015;181:31–38. doi:10.1016/j.electacta.2015.02.191.
  • Mosavat N, Oh E, Chai G. A review of electrokinetic treatment technique for improving the engineering characteristics of low permeable problematic soils. Int J Geomate. 2012;2(2):266–272.
  • Tang J, He J, Xin X, et al. Biosurfactants enhanced heavy metals removal from sludge in the electrokinetic treatment. Chem Eng J. 2018;334:2579–2592. doi:10.1016/j.cej.2017.12.010.
  • Yeung AT, Hsu C. Electrokinetic remediation of cadmium-contaminated clay. J Environ Eng. 2005;131(2):298–304. doi:10.1061/(asce)0733-9372(2005)131:2(298).
  • Masi M, Ceccarini A, Iannelli R. Model-based optimization of field-scale electrokinetic treatment of dredged sediments. Chem Eng J. 2017;328:87–97. doi:10.1016/j.cej.2017.07.004.
  • Reddy KR, Chinthamreddy S. Sequentially enhanced electrokinetic remediation of heavy metals in Low buffering clayey soils. J Geotech Geoenvironmental Eng. 2003;129(3):263–277. doi:10.1061/(asce)1090-0241(2003)129:3(263).
  • Ottosen LM, Pedersen AJ, Ribeiro AB, et al. Case study on the strategy and application of enhancement solutions to improve remediation of soils contaminated with Cu, Pb and Zn by means of electrodialysis. Eng Geol. 2005;77:317–329. doi:10.1016/j.enggeo.2004.07.021.
  • Gidarakos E, Giannis A. Chelate agents enhanced electrokinetic remediation for removal cadmium and zinc by conditioning catholyte pH. Water Air Soil Pollut. 2006;172:295–312. doi:10.1007/s11270-006-9080-7.
  • Kennou B, El Meray M, Romane A, et al. Assessment of heavy metal availability (Pb, Cu, Cr, Cd, Zn) and speciation in contaminated soils and sediment of discharge by sequential extraction. Environ Earth Sci. 2015;74(7):5849–5858. doi:10.1007/s12665-015-4609-y.
  • Gonzini O, Plaza A, Di Palma L, et al. Electrokinetic remediation of gasoil contaminated soil enhanced by rhamnolipid. J Appl Electrochem. 2010;40(6):1239–1248. doi:10.1007/s10800-010-0095-9.
  • Wong JSH, Hicks RE, Probstein RF. EDTA-enhanced electroremediation metal-contaminated soils. J Hazard Mater. 1997;55:61–79.
  • Evangelou MWH, Bauer U, Ebel M, et al. The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum. Chemosphere. 2007;68(2):345–353. doi:10.1016/j.chemosphere.2006.12.058.
  • Song Y, Ammami MT, Benamar A, et al. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment. Environ Sci Pollut Res. 2016;23(11):10577–10586. doi:10.1007/s11356-015-5966-5.
  • Chen WC, Juang RS, Wei YH. Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochem Eng J. 2015;103:158–169. doi:10.1016/j.bej.2015.07.009.
  • Tang J, He J, Liu T, et al. Removal of heavy metal from sludge by the combined application of a biodegradable biosurfactant and complexing agent in enhanced electrokinetic treatment. Chemosphere. 2017;189:599–608. doi:10.1016/j.chemosphere.2017.09.104.
  • Tang J, Qiu Z, Tang H, et al. Coupled with EDDS and approaching anode technique enhanced electrokinetic remediation removal heavy metal from sludge. Environ Pollut. 2021;272(115975):10.
  • Tang J, He J, Tang H, et al. Heavy metal removal effectiveness, flow direction and speciation variations in the sludge during the biosurfactant-enhanced electrokinetic remediation. Sep Purif Technol. 2020;246(116918):11.
  • Tang J, He J, Qiu Z, et al. Metal removal effectiveness, fractions, and binding intensity in the sludge during the multiple washing steps using the combined rhamnolipid and saponin. J Soils Sediments. 2019;19(3): 1286–1296.
  • Aşçi Y, Nurbaş M, Saǧ Açikel Y. Investigation of sorption/desorption equilibria of heavy metal ions on/from quartz using rhamnolipid biosurfactant. J Environ Manage. 2010;91(3):724–731. doi:10.1016/j.jenvman.2009.09.036.
  • Giannis A, Gidarakos E, Skouta A. Application of sodium dodecyl sulfate and humic acid as surfactants on electrokinetic remediation of cadmium-contaminated soil. Desalination. 2007;211:249–260. doi:10.1016/j.desal.2006.02.097.
  • Mahamat Ahmat A, Mamindy-Pajany Y, Nadah J. Lowering sulfates release from SO42- rich geomaterials: few tests regarding the hydraulic binders’ pathway. Int J Environ Sci Technol. 2021; doi:10.1007/s13762-020-03027-x.
  • Tribout C. Valorisation de sédiments traités en techniques routières : contribution à la mise en place d’un protocole d’acceptabilité. Université de Toulouse. Thèse de doctorat. Toulouse; 2010.
  • Priadi CR. Caractérisation des phases porteuses: Métaux particulaires en Seine. Université Paris Sud 11. Thèse de doctorat. Paris; 2010.
  • Poitevin A. Caractérisation multi-échelles des phases porteuses des polluants métalliques Zn et Pb dans un sédiment mis en dépôt. De l’analyse de terrain au rayonnement synchrotron. Université d’Orléans. Thèse de doctorat. Orléans; 2012.
  • Gao J, Luo Q, Zhang C, et al. Enhanced electrokinetic removal of cadmium from sludge using a coupled catholyte circulation system with multilayer of anion exchange resin. Chem Eng J. 2013;234:1–8. doi:10.1016/j.cej.2013.08.019.
  • Maturi K, Reddy KR. Simultaneous removal of organic compounds and heavy metals from soils by electrokinetic remediation with a modified cyclodextrin. Chemosphere. 2006;63(6):1022–1031. doi:10.1016/j.chemosphere.2005.08.037.
  • Colacicco A, De Gioannis G, Muntoni A, et al. Enhanced electrokinetic treatment of marine sediments contaminated by heavy metals and PAHs. Chemosphere. 2010;81(1):46–56. doi:10.1016/j.chemosphere.2010.07.004.
  • Ammami MT, Benamar A, Wang H, et al. Simultaneous electrokinetic removal of polycyclic aromatic hydrocarbons and metals from a sediment using mixed enhancing agents. Int J Environ Sci Technol. 2014;11(7):1801–1816. doi:10.1007/s13762-013-0395-9.
  • Bahemmat M, Farahbakhsh M. Catholyte conditioning enhanced electrokinetic remediation of Co and Pb polluted soil. Environ Eng Manag J. 2015;14(1):89–96. doi:10.30638/eemj.2015.011.
  • Saichek RE, Reddy KR. Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil. Chemosphere. 2003;51(4):273–287. doi:10.1016/S0045-6535(02)00849-4.
  • Grundl T, Michalski P. Electroosmotically driven water flow in sediments. Water Res. 1996;30(4):811–818. doi:10.1016/0043-1354(95)00224-3.
  • Ait Ahmed O. Dépollution des sols par la méthode électrocinétique. Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf. Thèse de doctorat. Oran; 2016.
  • Rozas F, Castellote M. Electrokinetic remediation of dredged sediments polluted with heavy metals with different enhancing electrolytes. Electrochim Acta. 2012;86:102–109. doi:10.1016/j.electacta.2012.03.068.
  • Jeon CS, Yang JS, Kim KJ, et al. Electrokinetic removal of petroleum hydrocarbon from residual clayey soil following a washing process. Clean Soil Air Water. 2010;38(2):189–193. doi:10.1002/clen.200900190.
  • Tanaka T, Amosa MK, Iwata M, et al. Electrokinetic sedimentation: a review. Int J Environ Technol Manag. 2016;19(5/6):374. doi:10.1504/ijetm.2016.10004548.
  • Zhang Z, Ren W, Zhang J, et al. Electrokinetic remediation of Pb near the e-waste dismantle site with Fe(NO3)3 as cathode electrolyte. Environ Technol. 2021;42(6):884–893.
  • Kornilovich B, Mishchuk N, Abbruzzese K, et al. Enhanced electrokinetic remediation of metals-contaminated clay. Colloids Surfaces A Physicochem Eng Asp. 2005;265:114–123. doi:10.1016/j.colsurfa.2005.02.042.
  • Chang JH, Qiang Z, Huang CP. Remediation and stimulation of selected chlorinated organic solvents in unsaturated soil by a specific enhanced electrokinetics. Colloids Surfaces A Physicochem Eng Asp. 2006;287:86–93. doi:10.1016/j.colsurfa.2006.03.039.
  • Moghadam MJ, Moayedi H, Sadeghi MM, et al. A review of combinations of electrokinetic applications. Environ Geochem Health. 2016;38(6):1217–1227. doi:10.1007/s10653-016-9795-3.
  • Zhou M, Zhu S, Wei X. Effects of electrolyte on the removal of fluorine from red mud by electrokinetic remediation. Environ Technol (United Kingdom). 2019: 1–12. doi:10.1080/09593330.2019.1701563.
  • Virkutyte J, Sillanpää M, Latostenmaa P. Electrokinetic soil remediation – critical overview. Sci Total Environ. 2002;289:97–121. doi:10.1016/S0048-9697(01)01027-0.
  • Singh SP, Tack FM, Verloo MG. Heavy metal fractionation and extractability in dredged sediment derived surface soils. Water Air Soil Pollut. 1998;102:313–328. doi:10.1023/A:1004916632457.
  • Ayyanar A, Thatikonda S. Enhanced electrokinetic removal of heavy metals from a contaminated lake sediment for ecological risk reduction. Soil Sediment Contam. 2020;30: 1–23.
  • Hlavackova P. Evaluation du comportement du cuivre et du zinc dans une matrice de type sol à l’aide de différentes méthodologies. Institut National des Sciences Appliquées de Lyon. Thèse de doctorat. Lyon; 2005.
  • Nystroem GM, Ottosen LM, Villumsen A. Electrodialytic removal of Cu, Zn, Pb, and Cd from harbor sediment: influence of changing experimental conditions. Environ Sci Technol. 2005;39(8):2906–2911. doi:10.1021/es048930w.
  • Tack FM, Lapauw F, Verloo MG. Determination and fractionation of sulphur in a contaminated dredged sediment. Talanta. 1997;44(12):2185–2192. doi:10.1016/S0039-9140(97)00035-0.
  • Lions J, van der Lee J, Guéren V, et al. Zinc and cadmium mobility in a 5-year-old dredged sediment deposit: experiments and modelling. J Soils Sediments. 2007;7(4):207–215. doi:10.1065/jss2007.05.226.
  • Gäbler HE. Mobility of heavy metals as a function of pH of samples from an overbank sediment profile contaminated by mining activities. J Geochemical Explor. 1997;58:185–194. doi:10.1016/S0375-6742(96)00061-1.
  • Lions J, Guérin V, Bataillard P, et al. Metal availability in a highly contaminated, dredged-sediment disposal site: field measurements and geochemical modeling. Environ Pollut. 2010;158(9):2857–2864. doi:10.1016/j.envpol.2010.06.011.
  • Isaure M. Spéciation et transfert du zinc dans un dépôt de sédiment de curage contaminé : évolution le long du profil pédologique. Université Joseph-Fourier. Thèse de doctorat. Grenoble; 2012.
  • Meima JA, Comans RNJ. Application of surface complexation/precipitation modeling to contaminant leaching from weathered municipal solid waste incinerator bottom ash. Environ Sci Technol. 1998;32(5):688–693. doi:10.1021/es9701624.
  • Dijkstra JJ, Meeussen JCL, Comans RNJ. Leaching of heavy metals from contaminated soils: An experimental and modeling study. Environ Sci Technol. 2004;38(16):4390–4395. doi:10.1021/es049885v.
  • Calmano W, Hong J, Forstner U. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Wal Sci Tech. 1993;28(8):223–235.
  • Morse JW, Luther GW. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim Cosmochim Acta. 1999;63(19–20):3373–3378. doi:10.1016/S0016-7037(99)00258-6.
  • Achard R. Dynamique des contaminants inorganiques dans les sédiments de dragage : rôle spécifique de la matière organique naturelle. Université de Toulon. Thèse de doctorat. Toulon; 2013.
  • Cappuyns V. Barium (Ba) leaching from soils and certified reference materials. Appl Geochemistry. 2018;88:68–84. doi:10.1016/j.apgeochem.2017.05.002.
  • Ammami MT, Portet-Koltalo F, Benamar A, et al. Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments. Chemosphere. 2015;125:1–8. doi:10.1016/j.chemosphere.2014.12.087.
  • Mao X, Jiang R, Xiao W, et al. Use of surfactants for the remediation of contaminated soils: A review. J Hazard Mater. 2015;285:419–435. doi:10.1016/j.jhazmat.2014.12.009.
  • Chuan MC, Shu GY, Liu JC. Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH. Water Air Soil Pollut. 1996;90:543–556. doi:10.1007/BF00282668.
  • Idivan A, Nunes V. Transport d’ions sous l’effet d’un champ électrique en milieu poreux : application à la séparation de terres rares par électrophorèse à focalisation. Institut National Polytechnique de Lorraine. Thèse de doctorat. Nacy; 2018.
  • Cappuyns V, Swennen R. Kinetics of element release during combined oxidation and pHstat leaching of anoxic river sediments. Appl Geochemistry. 2005;20(6):1169–1179. doi:10.1016/j.apgeochem.2005.02.004.
  • Satawathananont S, Patrick WH, Moore PA. Effect of controlled redox conditions on metal solubility in acid sulfate soils. Plant Soil. 1991;133(2):281–290. doi:10.1007/BF00009200.
  • Mulligan CN. Recent advances in the environmental applications of biosurfactants. Curr Opin Colloid Interface Sci. 2009;14(5):372–378. doi:10.1016/j.cocis.2009.06.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.