162
Views
0
CrossRef citations to date
0
Altmetric
Articles

Characterisation of Zinc-bearing sulphate phases formed during the synthesis of phosphoric acid and Zinc removal by the ligands of Opuntia ficus-indica

, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 4125-4136 | Received 16 Mar 2021, Accepted 08 Jun 2021, Published online: 08 Jul 2021

References

  • Lutskiy D, Litvinova T, Ignatovich A, et al. Complex processing of phosphogypsum - a way of recycling of dumps with reception of commodity production of wide application. J Ecol Eng. 2018;19(2):221–225.
  • Parreira A, Kobayashi A, Silvestre O. Influence of Portland cement type on unconfined compressive strength and linear expansion of cement-stabilized phosphogypsum. J Environ Eng. 2003;129(10):956–960.
  • Tayibi H, Choura M, López FA, et al. Environmental impact and management of phosphogypsum. J Environ Manage. 2009;90(8):2377–2386.
  • Yang J, Liu W, Zhang L, et al. Preparation of load-bearing building materials from autoclaved phosphogypsum. Constr Build Mater. 2009;23(2):687–693.
  • Malinowski P, Borowik M, Wantuch W, et al. Utilization of waste gypsum in fertilizer production. Pol J Chem Technol. 2014;16(1):45–47.
  • Hammas I, Horchani-naifer K, Mokhtar F. Characterization and optical study of phosphogypsum industrial waste. Stud Chem Proc Technol (SCPT). 2013;1(2):30–36.
  • Bumanis G, Zorica J, Bajare D. Properties of foamed lightweight high-performance phosphogypsum-based ternary system binder. Appl Sci. 2020;10(18):6222.
  • Josip I, Kalu L, Vukovi N, et al. Refinement of waste phosphogypsum from prahovo, Serbia: characterization and assessment of application in civil engineering. Clay Miner. 2020;55:63–70.
  • Lei L, Gu J, Wang X, et al. Effects of phosphogypsum and medical stone on nitrogen transformation, nitrogen functional genes, and bacterial community during aerobic composting. Sci Total Environ. 2021;753:141746.
  • El-Bahi S, Sroor A, Mohamed G, et al. Radiological impact of natural radioactivity in Egyptian phosphate rocks, phosphogypsum and phosphate fertilizers. Appl Radiat Isot. 2017;123:121–127.
  • Singh M. Treating waste phosphogypsum for cement and plaster manufacture. Cem Concr Res. 2002;32(7):1033–1038.
  • Al Attar L, Shamali K, Ghany BA, et al. Case study: heavy metals and fluoride contents in the materials of Syrian phosphate industry and in the vicinity of phosphogypsum piles. Environ Technol. 2012;33(2):143–152.
  • Rutherford PM, Dudas MJ, Samek RA. Environmental impacts of phosphogypsum. Sci Total Environ. 1994;149(1–2):1–38.
  • Rutherford P, Dudas M, Arocena J. Trace elements and fluoride in phosphogypsum leachates. Environ Technol. 1995;16(4):343–354.
  • Al Masri M, Amin Y, Ibrahim S, et al. Distribution of some trace metals in Syrian phosphogypsum. Appl Geochem. 2004;19(5):747–753.
  • El-Didamony H, Gado HS, Awwad NS, et al. Treatment of phosphogypsum waste produced from phosphate ore processing. J Hazard Mater. 2013;244-245:596–602.
  • Mechi N, Ammar M, Loungou M, et al. Thermal study of Tunisian phosphogypsum for use in reinforced plaster. Br J Appl Sci Technol. 2016;16(3):1–10.
  • Guo T, Malone R, Rusch K. Stabilized phosphogypsum:class C Fly Ash:Portland type II cement composites for Potential marine application. Environ Sci Technol. 2001;35(19):3967–3973.
  • Kassir L, Lartiges B, Ouaini N. Effects of fertilizer industry emissions on local soil contamination: a case study of a phosphate plant on the east mediterranean coast. Environ Technol. 2012;33(8):873–885.
  • Ammar R, El Samrani A, Kazpard V, et al. Applying physicochemical approaches to control phosphogypsum heavy metal releases in aquatic environment. Environ Sci Pollut Res. 2013;20(12):9014–9025.
  • Aoun M, Arnaudguilhem C, El Samad O, et al. Impact of a phosphate fertilizer plant on the contamination of marine biota by heavy elements. Environ Sci Pollut Res. 2015;22(19):14940–14949.
  • El Kateb A, Stalder C, Rüggeberg A, et al. Impact of industrial phosphate waste discharge on the marine environment in the gulf of gabes (Tunisia). PLOS ONE. 2018;13(5):e0197731.
  • Chaalal O, Madhuranthakam C, Moussa B, et al. Sustainable approach for recovery of sulfur from phophogypsum. ACS Omega. 2020;5(14):8151–8157.
  • Fakhri M, Abboud abi Saab M, Romano JC. The use of sediments to assess the impact of selaata phosphate plant on batroun coastal area (Lebanon, levantine basin). Leban Sci J. 2008;9(1):29–42.
  • El Samad O, Aoun M, Nsouli B, et al. Investigation of the radiological impact on the coastal environment surrounding a fertilizer plant. J Environ Radioact. 2014;133:69–74.
  • El Ayeb N, Béjaoui M, Muhr H, et al. Behaviour and biochemical responses of the marine clam Ruditapes decussatus exposed to phosphogypsum. Environ Technol. 2020: 1–12. https://www.tandfonline.com/doi/abs/10.1080/09593330.2020.1740332?journalCode=tent20.
  • Aoun M, El Samrani A, Lartiges B, et al. Releases of phosphate fertilizer industry in the surrounding environment: investigation on heavy metals and polonium-210 in soil. J Environ Sci. 2010;22(9):1387–1397.
  • Azzi V, Kazpard V, Latiges B, et al. Trace metals in phosphate fertilizers used in eastern mediterranean countries. CLEAN Soil Air Water. 2017;45(1):1–8.
  • Cao X, Ma LQ, Rhue DR, et al. Mechanisms of lead, copper, and Zinc retention by phosphate rock. Environ Pollut. 2004;131(3):435–444.
  • Singh M, Garg M, Verma C, et al. An improved process for the purification of phosphogypsum. Constr Build Mater. 1996;10(8):597–600.
  • Nharingo T, Moyo M. Application of Opuntia ficus-indica in bioremediation of wastewaters. A critical review. J Environ Manage. 2016;166:55–72.
  • El Hayek E, El Samrani A, Lartiges B, et al. Potential of Opuntia ficus-indica for air pollution biomonitoring: a lead isotopic study. Environ Sci Pollut Res. 2015;22(22):17799–17809.
  • El Hayek E, El Samrani A, Lartiges B, et al. Lead bioaccumulation in Opuntia ficus-indica following foliar or root exposure to lead-bearing apatite. Environ Pollut. 2017;220:779–787.
  • Torres LG, Cadena G, Carpinteyro-Urban S, et al. New galactomannans and mucilages with coagulant-Flocculant activity for an environment-friendly treatment of wastewaters. Curr Adv Environ Sci. 2014;2(2):52–58.
  • Betatache H, Aouabed A, Drouiche N, et al. Conditioning of sewage sludge by prickly pear cactus (Opuntia ficus Indica) juice. Ecol Eng. 2014;70:465–469.
  • Ben Rebah F, Siddeeg S. Cactus an eco-friendly material for wastewater treatment : A review. J Mater Environ Sci. 2017;8(5):1770–1782.
  • Bouaouine O, Bourven I, Khalil F, et al. Identification of functional groups of Opuntia ficus-indica involved in coagulation process after its active part extraction. Environ Sci Pollut Res. 2018;25(11):11111–11119.
  • Trindade S, Rouxinol MI, Nabais J, et al. Evaluation of the potential of Opuntia ficus-indica cladodes as a natural Flocculant for wastewater treatment through simple procedures. J Ecol Eng. 2021;22(5):249–257.
  • Heddadi NNN, Hafid YAN, El. Alem N. A combined treatment of municipal solid waste landfill leachate using Opuntia ficus indica cactus as coagulant and titaniferous sand as filter material. Nanotechnol Environ Eng. 2021;4:1–14.
  • Mahi O, Khaldi K, Belardja MS, et al. Development of a new hybrid adsorbent from Opuntia Ficus Indica NaOH-activated with PANI-reinforced and its potential use in orange-G dye removal. J Inorg Organomet Polym Mater. 2021;31(5):2095–2104.
  • Hedaoo M, Deshmukh S. Wastewater treatment using bio-coagulant as Cactus Opuntia Ficus Indica - a wastewater treatment using bio-coagulant as Cactus Opuntia Ficus Indica – a review. IJSRD Int J Sci Res Dev. 2019;6(10):711–717.
  • Fox D, Pichler T, Yeh D, et al. Removing heavy metals in water: The interaction of cactus Mucilage and Arsenate (As (V)). Environ Sci Technol. 2012;46(8):4553–4559.
  • Siddique A, Hassan A, Rehman Khan S, et al. Appraisal of heavy metals and nutrients from phosphate rocks, khyber. Chem Int. 2018;4(1):1–6.
  • Hughes E, Robinson T, Bassett D, et al. Critical and diverse roles of phosphates in human bone formation. J Mater Chem B. 2019;7(47):7460–7470.
  • Dorozhkin SV. Calcium phosphates. In: IV Antoniac, editor. Handbook of bioceramics and biocomposites. Cham: Springer International Publishing; 2016. p. 91–118.
  • da Conceição F, Bonotto D. Radionuclides, heavy metals and fluorine incidence at tapira phosphate rocks, Brazil, and their industrial (by) products. Environ Pollut. 2006;139(2):232–243.
  • Takada T, Kiyama M, Torii H, et al. Effect of pH values on the formation and solubility of Zinc compounds. Bull Inst Chem Res Kyoto Univ. 1978;56(5):242–246.
  • Chafik D, Bchitou R, Bouhaouss A. Modeling and optimization of adsorption and removal of Cd (II) from aqueous solution by phosphogypsum. Asian J Chem. 2014; 26(24):8589.
  • Balkaya N, Cesur H. Adsorption of cadmium from aqueous solution by phosphogypsum. Chem Eng J. 2008; 140(1–3):247–254.
  • Udo E, Bohn H, Tucker T. Zinc adsorption by calcareous soils. Soil Sci Soc Am J. 1970;34(3):405–407.
  • Cárdenas-González JF, Alcaraz-Vázquez I, Moctezuma-Zarate MG, et al. Removal of chromium (vi) from aqueous solution by opuntia ficus indica biomass. Int J Eng Sci Res Technol. 2016;5(12):515–522.
  • Nharingo T, Zivurawa M, Guyo U. Exploring the use of cactus Opuntia ficus indica in the biocoagulation–flocculation of Pb(II) ions from wastewaters. Int J Environ Sci Technol. 2015;12(12):3791–3802.
  • Mataka L, Sajidu S, Masamba W, et al.. oleifera seed powders : batch, time, temperature. pH and adsorption isotherm studies. Int J Water Resour Environ Eng. 2010;2(May):50–59.
  • El-Sayed G, Ibrahiem S, Dessouki H. Removal of Zn (ii), Cd (ii) and Mn (ii) from aqueous solutions by adsorption on maize stalks. Malays J Anal Sci. 2011;15(1):8–21.
  • Vijayaraghavan G, Sivakumar T, Adichakkravarthy V. Application of plant based coagulants for waste water treatment. Int J Adv Eng Res Stud. 2011;1(1):88–92.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.