145
Views
3
CrossRef citations to date
0
Altmetric
Articles

Kinetic and mechanism investigation on the gamma irradiation induced degradation of quizalofop-p-ethyl

, &
Pages 4147-4155 | Received 13 Feb 2021, Accepted 09 Jun 2021, Published online: 28 Jun 2021

References

  • Schwarzenbach RP, Egli T, Hofstetter TB, et al. Global water pollution and human health. Annu Rev Environ Resour. 2010;35(1):109–136. doi:10.1146/annurev-environ-100809-125342
  • Sunasee R. Nanocellulose: preparation, functionalization and applications, reference module in chemistry. Molecul Sci Chem Eng. 2020. doi:10.1016/B978-0-12-409547-2.14946-7
  • Lu MC, Chen JN, Chang CP. Oxidation of dichlorvos with hydrogen peroxide using ferrous ion as catalyst. J Hazard Mater. 1999;65:277–288. doi:10.1016/s0304-3894(98)00268-4
  • Ferrari F, Gallipoli A, Balderacchi M, et al. Exposure of the main Italian river basin to pharmaceuticals. J Toxicol. 2011. doi:10.1155/2011/989270
  • Reinecke SA, Reinecke AJ. The impact of organophosphate pesticides in orchards on earthworms in the western cape, South Africa. Ecotoxicol Environ Saf. 2007;66:244–251. doi:10.1016/j.ecoenv.2005.10.006
  • Yasmin S, D’Souza D. (2010). Effects of pesticides on the growth and reproduction of earthworm: a review. Appl Environ Soil Sci. Article ID 678360.
  • Espinoza-Navarro O, Bustos-Obregon E. Effect of malathion on the male reproductive organs of earthworms, Eisenia foetida. Asian J Androl. 2005;7:97–101. doi:10.1111/j.1745-7262.2005.00005.x
  • Loos R, Gawlik BM, Locoro G, et al. EU-wide survey of polar organic persistent pollutants in European river waters. Environ Pollut. 2009;157:561–568. doi: 10.1016/j.envpol.2008.09.020
  • Lazartigues A, Fratta C, Baudot R, et al. Multiresidue method for the determination of 13 pesticides in three environmental matrices: water, sediments and fish muscle. Talanta. 2011;85:1500–1507. doi:10.1016/j.talanta.2011.06.023
  • Luo M, Liu D, Zhao L, et al. A novel magnetic ionic liquid modified carbon nanotube for the simultaneous determination of aryloxyphenoxypropionate herbicides and their metabolites in water. Analytical Chimica Acta. 2014;852:88–96. doi:10.1016/j.aca.2014.09.024
  • López-Ruiz R, Romero-González R, Martínez Vidal JL, et al. Behavior of quizalofop-p and its commercial products in water by liquid chromatography coupled to high resolution mass spectrometry. Ecotoxicol Environ Saf. 2018;157:285–291. doi:10.1016/j.ecoenv.2018.03.094
  • Mantzos N, Karakitsou A, Nikolaki S, et al. Dissipation and transport of quizalofop-p-ethyl herbicide in sunflower cultivation under field conditions. Environ Sci Pollut Res. 2016;23:3481–3490. doi:10.1007/s11356-015-5572-6
  • Mantzos N, Karakitsou A, Zioris I, et al. QuEChERS and solid phase extraction methods for the determination of energy crop pesticides in soil, plant and runoff water matrices. Int J Environ Anal Chem. 2013;93:1566–1584. doi:10.1080/03067319.2013.803282
  • Quesada-Molina C, García-Campaña AM, del Olmo-Iruela L, et al. Large volume sample stacking in capillary zone electrophoresis for the monitoring of the degradation products of metribuzin in environmental samples. J Chromatogr, A. 2007;1164(1–2):320–328. doi:10.1016/j.chroma.2007.06.076
  • Zeng D, Shi H, Li B, et al. Development of an enzyme-linked immunosorbent assay for quantitative determination of quizalofop-p-ethyl. J Agric Food Chem. 2006;54:8682–8687. doi:10.1021/jf061492n
  • Carabias-Martínez R, Rodríguez-Gonzalo E, Revilla-Ruiz P, et al. Solid-phase extraction and sample stacking–micellar electrokinetic capillary chromatography for the determination of multiresidues of herbicides and metabolites. J Chromatogr, A. 2003;990:291–302. doi:10.1016/s0021-9673(02)01969-6
  • Labanowski J, Pallier V, Feuillade-Cathalifaud G. Study of organic matter during coagulation and electrocoagulation processes: application to a stabilized landfill leachate. J Hazard Mater. 2010;179:166–172. doi:10.1016/j.jhazmat.2010.02.074
  • Zhu FP, Duan JL, Yuan XZ, et al. Hydrolysis, adsorption, and biodegradation of bensulfuron methyl under methanogenic conditions. Chemosphere. 2018;199:138–146. doi:10.1016/j.chemosphere.2018.01.149
  • Chouchane H, Najjari H, Neifar M, et al. Unravelling the characteristics of a heteropolysaccharide–protein from an haloarchaeal strain with flocculation effectiveness in heavy metals and dyes removal. Environ Technol. 2020;41:2180–2195. doi:10.1080/09593330.2017.1313886
  • Chouchane H, Mahjoubi M, Ettoumi B, et al. Anovel thermally stable heteropolysaccharide-based bioflocculant from hydrocarbonoclastic strain kocuria rosea BU22S and its application in dye removal. Environ Tech. 2018;39:859–872. doi:10.1080/09593330.2017.1313886
  • Chen H, Wang J. Degradation of sulfamethoxazole by ozonation combined with ionizing radiation. J Hazard Mater. 2020;124377. doi:10.1016/j.jhazmat.2020.124377
  • Zanella R, Avella E, Ramírez-Zamora RM, et al. Enhanced photocatalytic degradation of sulfamethoxazole by deposition of Au, Ag and Cu metallic nanoparticles on TiO2. Environ Technol. 2018;39(18):2353–2364. doi:10.1080/09593330.2017.1354926
  • Wei Z, Liu J, Shangguan W. A review on photocatalysis in antibiotic wastewater: pollutant degradation and hydrogen production. Chin J Catal. 2020;41(10):1440–1450. doi:10.1016/s1872-2067(19)63448-0
  • Gutiérrez RF, Santiesteban A, Cruz-López L, et al. Removal of chlorothalonil, methyl parathion and methamidophos from water by the Fenton reaction. Environ Technol. 2007;28(3):267–272. doi:10.1080/09593332808618787
  • Borba FH, Módenes AN, Espinoza-Quiñones FR, et al. Toxicity assessment of tannery effluent treated by an optimized Photo-Fenton process. Environ Technol. 2013;34(5):653–661. doi:10.1080/09593330.2012.710407
  • Villota N, Coralli I, Lomas JM. Changes of dissolved oxygen in aqueous solutions of caffeine oxidized by Photo-Fenton reagent. Environ Technol. 2019: 1–18. doi:10.1080/09593330.2019.1639830
  • Zaouak A, Matoussi F, Dachraoui M. Electrochemical oxidation of herbicide bifenox acid in aqueous medium using diamond thin film electrode. J Environ Sci Health, Part B. 2013;48:878–884. doi:10.1080/03601234.2013.79682
  • Zaouak A, Matoussi F, Dachraoui M. Electrochemical degradation of a chlorophenoxy propionic acid derivative used as an herbicide at boron-doped diamond. Desalin Water Treat. 2014;52:1662–1668. doi:10.1080/19443994.2013.807001
  • Zaouak A, Matoussi F, Dachraoui M. Investigation of the anodic oxidation of aryloxy propionic acid derivatives in acetonitrile. J Mater Environ Sci. 2015;6:138–145.
  • Zaouak A, Noomen A, Jelassi H. Gamma-radiation induced decolorization and degradation on aqueous solutions of indigo carmine dye. J Radioanal Nucl Chem. 2018;317:37–44. doi:10.1007/s10967-018-5835-z
  • Zaouak A, Noomen A, Jelassi H. Gamma radiolysis of erythrosine dye in aqueous solutions. J Radioanal Nucl Chem. 2019;321:965–971. doi:10.1007/s10967-019-06671-x
  • Alsager OA, Alnajrani MN, Alhazzaa O. Decomposition of antibiotics by gamma irradiation: kinetics, antimicrobial activity and real application in food matrices. Chem Eng J. 2018;338:548–556. doi:10.1016/j.cej.2018.01.065
  • Arshad R, Bokhari TH, Khosa KK, et al. Gamma radiation induced degradation of anthraquinone reactive blue-19 dye using hydrogen peroxide as oxidizing agent. Radiat Phys Chem. 2020;168:108637. doi:10.1016/j.radphyschem.2019.108637
  • Zaouak A, Noomen A, Jelassi H. Gamma radiation induced degradation of the phenoxy acid herbicide diclofop-methyl in aqueous solutions. Appl Radiat Isot. 2020;156:108939. doi:10.1016/j.apradiso.2019.108939
  • Zaouak A, Noomen A, Jelassi H. Degradation mechanism of losartan in aqueous solutions under the effect of gamma radiation. Radiat Phys Chem. 2021;184109435. doi:10.1016/j.radphyschem.2021.109435
  • Askri R, Erable B, Neifar M, et al. Understanding the cumulative effects of salinity, temperature and inoculum size for designing optimal halothermotolerant bioanodes from hypersaline sediment. Bioelectrochemistry. 2019;129:179–188. doi:10.1016/j.bioelechem.2019.05.015
  • Askri R, Erable B, Etchevery L, et al. Allochthonous and autochthonous halothermotolerant bioanodes from hypersaline sediment and textile wastewater: a promising microbial electrochemical process for energy recovery coupled with real textile wastewater treatment. Front Bioeng Biotechnol. 2020;17:2020. doi:10.3389/fbioe.2020.609446
  • Shah NS, Khan JA, Nawaz S, et al. Kinetic and mechanism investigation on the gamma irradiation induced degradation of endosulfan sulfate. Chemosphere. 2015;121:18–25. doi: 10.1016/j.chemosphere.2014.10.046
  • He X, Zhang G, de la Cruz AA, et al. Degradation mechanism of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals in homogeneous UV/H2O2. process. Environ Sci Technol. 2014;48(8):4495–4504. doi:10.1021/es403732s
  • Guo Z, Dong Q, He D, et al. Gamma radiation for treatment of bisphenol A solution in presence of different additives. Chem Eng J. 2012;183:10–14. doi:10.1016/j.cej.2011.12.006
  • Buerge IJ, Pavlova P, Hanke I, et al. Degradation and sorption of the herbicides 2,4-D and quizalofop-P-ethyl and their metabolites in soils from railway tracks. Environ Sci Europe. 2020;32:1. doi:10.1186/s12302-020-00422-6
  • The Agrochemicals Handbook, the royal society of chemistry, England, 1991.
  • Manthey FA, Szelezniak EF, Anyszka ZM, et al. Foliar absorption and phytotoxicity of quizalofop with lipid compounds. Weed Sci. 1992;40:558–562. doi:10.1017/S0043174500058136
  • Gherekhloo J, Mohassel MHR, Mahalati MN, et al. Confirmed resistance to aryloxyphenoxypropionate herbicides in phalaris minor populations in Iran. Weed Biol Manag. 2011;11:29–37. doi:10.1111/j.1445-6664.2011.00402.x
  • Wu H, Zhao Y, Tan X, et al. A convenient method for determination of quizalofop-p-ethyl based on the fluorescence quenching of eosin Y in the presence of Pd(II). Spectrochim Acta, Part A. 2017;174:301–306. doi:10.1016/j.saa.2016.12.003
  • Rosculete C, Bonciu E, Rosculete E, et al. Determination of the environmental pollution potential of some herbicides by the assessment of cytotoxic and genotoxic effects on Allium cepa. Int J Environ Res Public Health. 2019;16:75–85. doi:10.3390/ijerph16010075
  • Ahemad M, Khan MS. Toxicological effects of selective herbicides on plant growth promoting activities of phosphate solubilizing Klebsiella sp. strain PS19. Curr Microbiol. 2011;62:532–538. doi:10.1007/s00284-010-9740-0
  • Saha A, Bhaduri D, Pipariya A, et al. Influence of imazethapyr and quizalofop-p-ethyl application on microbial biomass and enzymatic activity in peanut grown soil. Environ Sci Pollut Res. 2016;23:23758–23771. doi:10.1007/s11356-016-7553-9
  • Zhang H, Li M, Li J, et al. Purification and properties of a novel quizalofop-p-ethyl-hydrolyzing esterase involved in quizalofop-p-ethyl degradation by Pseudomonas sp. J Microbiol Cell Factories. 2017;2(16), 80-87. doi:10.1186/s12934-017-0695-8
  • Dong W, Jiang S, Shi K, et al. Biodegradation of fenoxaprop-P-ethyl (FE) by Acinetobacter sp. strain DL-2 and cloning of FE hydrolase gene afeH. Bioresour Technol. 2015;186:114–121. doi:10.1016/j.biortech.2015.03.039
  • Liu HM, Lou X, Ge ZJ, et al. Isolation of an aryloxyphenoxy propanoate (AOPP) herbicide-degrading strain Rhodococcus ruber JPL-2 and the cloning of a novel carboxylesterase gene (feh). Braz J Microbiol. 2015;46:425–432. doi:10.1590/S1517-838246220140208
  • Niyaz AM, Khan A, Muneer M, et al. Photocatalytic degradation of trifluralin, clodinafop-propargyl, and 1,2-dichloro-4-nitrobenzene As determined by Gas chromatography coupled with mass spectrometry. Chromatography Res Inter. 2014;261683. doi:10.1155/2014/261683
  • M’Garrech S, Jelassi H, Mejri A, et al. An empirical model for predicting the color variation of biologic molecules as a function of irradiation dose. J Radioanal Nucl Chem. 2013;295:67–75. doi:10.1007/s10967-012-1847-2
  • Woods RJ. An introduction to radiation chemistry. Third ed New York: John Wiley.
  • Getoff N. Radiation-induced degradation of water pollutants: state of the art. Radiat Phys Chem. 1995;46:1079–1080. doi:10.1016/0969-806X(95)00059-7
  • Ismail M, Khan HM, Sayed M, et al. Advanced oxidation for the treatment of chlorpyrifos in aqueous solution. Chemosphere. 2013;93:645–651. doi:10.1016/j.chemosphere.2013.06.051
  • Buxton GV, Greenstock CL, Helman WP, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals ( OH/O-) in aqueous solution. J Phys Chem Ref Data. 1988;17:513–886. doi:10.1063/1.555805
  • Drzewicz P, Panta P, Gluszewski W, et al. Effect of selected scavengers on radiolytic degradation of 2,4-dichlorophenol for environmental purposes. J Radioanal Nucl Chem. 1999;242:601–609.
  • Bensalah N, Midassi S, Ahmad MI, et al. Degradation of hydroxychloroquine by electrochemical advanced oxidation processes. Chem Eng J. 2020;402:126279. doi:10.1016/j.cej.2020.126279
  • Cerreta G, Roccamante MA, Oller I, et al. Contaminants of emerging concern removal from real wastewater by UV/free chlorine process: a comparison with solar/free chlorine and UV/H2O2 at pilot scale. Chemosphere. 2019;236:124354. doi:10.1016/j.chemosphere.2019.124354
  • Xiao Y, Zhang L, Zhang W, et al. Comparative evaluation of iodoacids removal by UV/persulfate and UV/H2O2 processes. Water Res. 2016;102:629–639. doi:10.1016/j.watres.2016.07.004
  • Giannakis S, Andrew Lin KY, Ghanbari F. A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs). Chem Eng J. 2020;406:127083. doi:10.1016/j.cej.2020.127083
  • Ghanbari F, Riahi M, Kakavandi B, et al. Intensified peroxydisulfate/microparticles-zero valent iron process through aeration for degradation of organic pollutants: kinetic studies, mechanism and effect of anions. J Water Proc Eng. 2020;36:101321. doi:10.1016/j.jwpe.2020.101321
  • Brillas E, Sirés I, Oturan MA. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev. 2009;109:6570–6631. doi:10.1021/cr900136g
  • Mhemdi A, Oturan MA, Oturan N, et al. Electrochemical advanced oxidation of 2-chlorobenzoic acid using BDD or Pt anode and carbon felt cathode. J Electroanal Chem. 2013;709:111–117. doi:10.1016/j.jelechem.2013.09.034
  • Abu-Hashem AA. Synthesis, reactions and biological activity of quinoxaline derivatives. American J Org Chem. 2015;5:14–56. doi:10.5923/j.ajoc.20150501.03

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.