447
Views
2
CrossRef citations to date
0
Altmetric
Articles

Biodegradation performance and diversity of enriched bacterial consortia capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons

ORCID Icon, , , , , , , , , , , , & show all
Pages 4200-4211 | Received 04 Mar 2021, Accepted 13 Jun 2021, Published online: 13 Jul 2021

References

  • Shahsavari E, Schwarz A, Aburto-Medina A, et al. Biological degradation of polycyclic aromatic compounds (PAHs) in soil: a current perspective. Curr Pollut Rep. 2019;5:84–92.
  • Lukic B, Huguenot D, Panico A, et al. Influence of activated sewage sludge amendment on PAH removal efficiency from a naturally contaminated soil: application of the landfarming treatment. Environ Technol. 2017;38:2988–2998. Epub 2017/01/20.
  • Zhang J, Li R, Zhang X, et al. Traffic contribution to polycyclic aromatic hydrocarbons in road dust: a source apportionment analysis under different antecedent dry-weather periods. Sci Total Environ. 2019;658:996–1005. Epub 2019/01/27.
  • Benghait Y, Blaghen M. Heavy metals and antibiotics resistance of bacteria isolated from Marchica lagoon: biodegradation of anthracene on submerged aerated fixed bed reactor. Environ Technol. 2020:1–10. https://doi.org/10.1080/09593330.2020.1839133
  • Qazi F, Shahsavari EP, Ball S, et al. Detection and identification of polyaromatic hydrocarbons (PAHs) contamination in soil using intrinsic fluorescence. Environ Pollut. 2020;272:116010.
  • Ihunwo OC, Ibezim-Ezeani MU, Delvalls TA. Human health and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in sediment of Woji creek in the Niger Delta region of Nigeria. Mar Pollut Bull. 2021;162:111903.
  • Zhang Y, Virjamo V, Sobuj N, et al. Elevated temperature and CO2 affect responses of European aspen (Populus tremula) to soil pyrene contamination. Sci Total Environ. 2018;634:150–157.
  • Ghosal D, Ghosh S, Dutta TK, et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol. 2016;7:1369. Epub 2016/09/16.
  • Shi W, Guo Y, Ning G, et al. Remediation of soil polluted with HMW-PAHs by alfalfa or brome in combination with fungi and starch. J Hazard Mater. 2018;360:115–121.
  • Zhao OY, Zhang XN, Feng SD, et al. Starch-enhanced degradation of HMW PAHs by Fusarium sp. in an aged polluted soil from a coal mining area. Chemosphere. 2017;174:774–780. Epub 2017/02/16.
  • Shi W, Zhang XN, Jia HB, et al. Effective remediation of aged HMW-PAHs polluted agricultural soil by the combination of Fusarium sp. and smooth bromegrass (Bromus inermis Leyss.). J Integr Agric. 2017;16:199–209.
  • Tyagi M, da Fonseca MM, de Carvalho CC. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation. 2011;22:231–241. Epub 2010/08/04.
  • Davie-Martin CL, Stratton KG, Teeguarden JG, et al. Implications of bioremediation of polycyclic aromatic hydrocarbon-contaminated soils for human health and cancer risk. Environ Sci Technol. 2017;51:9458–9468. Epub 2017/08/25.
  • Sayara T, Cvancarova M, Cajthaml T, et al. Anaerobic bioremediation of PAHs-contaminated soil: assessment of the contaminants degradation and biogas production under thermophilic and mesophilic conditions. Environ Eng Manag J. 2015;14:153–165.
  • Li M, Yin H, Zhu M, et al. Co-metabolic and biochar-promoted biodegradation of mixed PAHs by highly efficient microbial consortium QY1. J Environ Sci. 2021;107:65–76.
  • Pagnout C, Rast C, Veber AM, et al. Ecotoxicological assessment of PAHs and their dead-end metabolites after degradation by Mycobacterium sp. strain SNP11. Ecotoxicol Environ Saf. 2006;65:151–158. Epub 2006/06/07.
  • Hong YW, Yuan DX, Lin QM, et al. Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar Pollut Bull. 2008;56:1400–1405.
  • Wang F, Li C, Wang H, et al. Characterization of a phenanthrene-degrading microbial consortium enriched from petrochemical contaminated environment. Int Biodeterior Biodegrad. 2016;115:286–292.
  • Gupta G, Kumar V, Pal AK. Biodegradation of polycyclic aromatic hydrocarbons by microbial consortium: a distinctive approach for decontamination of soil. Soil Sediment Contam. 2016;25:597–623.
  • Garbisu C, Garaiyurrebaso O, Epelde L, et al. Plasmid-Mediated bioaugmentation for the bioremediation of contaminated soils. Front Microbiol. 2017;8:1966. Epub 2017/10/25.
  • Kumari S, Regar RK, Manickam N. Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria. Bioresour Technol. 2018;254:174–179. Epub 2018/02/08.
  • Sharma A, Singh SB, Sharma R, et al. Enhanced biodegradation of PAHs by microbial consortium with different amendment and their fate in in-situ condition. J Environ Manage. 2016;181:728–736. Epub 2016/08/26.
  • Zhou H, Wang H, Huang Y, et al. Characterization of pyrene degradation by halophilic Thalassospira sp. strain TSL5-1 isolated from the coastal soil of Yellow Sea, China. Int Biodeterior Biodegrad. 2016;107:62–69.
  • Fernandez-Lopez C, Posada-Baquero R, Garcia JL, et al. Root-mediated bacterial accessibility and cometabolism of pyrene in soil. Sci Total Environ. 2021;760:143408. Epub 2020/11/28.
  • Swati GP, Thakur IS. Biodegradation of pyrene by Pseudomonas sp. ISTP(Y2). isolated from landfill soil: process optimisation using Box-Behnken design model. Bioresour Technol Rep. 2019;8:100329.
  • Wanapaisan P, Laothamteep N, Vejarano F, et al. Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium. J Hazard Mater. 2018;342:561–570. Epub 2017/09/09.
  • Pei Z, Chen Y. Polycyclic aromatic hydrocarbons contamination in surface soil of China: a review. Sci Total Environ. 2017;605–606:1011–1020.
  • Tuhackova J, Cajthaml T, Novak K. Hydrocarbon deposition and soil microflora as affected by highway traffic. Environ Pollut. 2001;113:255–262.
  • Wang D, Lin Y, Du W, et al. Optimization and characterization of lignosulfonate biodegradation process by a bacterial strain, sphingobacterium sp. HY-H. Int Biodeterior Biodegrad. 2013;85:365–371.
  • Wang Y, Liang J, Wang J, et al. Combining stable carbon isotope analysis and petroleum-fingerprinting to evaluate petroleum contamination in the Yanchang oilfield located on loess plateau in China. Environ Sci Pollut Res Int. 2018;25:2830–2841. Epub 2017/11/17.
  • Mehetre GT, Dastager SG, Dharne MS. Biodegradation of mixed polycyclic aromatic hydrocarbons by pure and mixed cultures of biosurfactant producing thermophilic and thermo-tolerant bacteria. Sci Total Environ. 2019;679:52–60. Epub 2019/05/15.
  • Yuan H, Yao J, Masakorala K, et al. Isolation and characterization of a newly isolated pyrene-degrading Acinetobacter strain USTB-X. Environ Sci Pollut Res Int. 2014;21:2724–2732. Epub 2013/10/15.
  • Lin Y, Cai LX. PAH-degrading microbial consortium and its pyrene-degrading plasmids from mangrove sediment samples in Huian, China. Mar Pollut Bull. 2008;57:703–706. Epub 2008/05/27.
  • Boonchan S, Britz ML, Stanley GA. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol. 2000;66:1007–1019. Epub 2000/03/04.
  • Zhao O, Feng S, Jia H, et al. Biodegradation of high molecular weight polycyclic aromatic hydrocarbons mixture by a newly isolated fusarium sp. and co-metabolic degradation with starch. Polycycl Aromat Comp. 2016;38:32–41.
  • Vaidya S, Jain K, Madamwar D. Metabolism of pyrene through phthalic acid pathway by enriched bacterial consortium composed of Pseudomonas, Burkholderia, and Rhodococcus (PBR). 3 Biotech. 2017;7:29. Epub 2017/04/13.
  • Carlstrom CJ, Tuovinen OH. Mineralization of phenanthrene and fluoranthene in yardwaste compost. Environ Pollut. 2003;124:81–91.
  • Wen J, Gao D, Zhang B, et al. Co-metabolic degradation of pyrene by indigenous white-rot fungus Pseudotrametes gibbosa from the northeast China. Int Biodeterior Biodegrad. 2011;65:600–604.
  • Wang Y, Fang L, Lin L, et al. Effects of low molecular-weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons. Chemosphere. 2014;99:152–159. Epub 2013/11/30.
  • Rentz JA, Alvarez PJ, Schnoor JL. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: implications for phytoremediation. Environ Pollut. 2005;136:477–484. Epub 2005/05/03.
  • Kim TJ, Lee EY, Kim YJ, et al. Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A-12. World J Microbiol Biotechnol. 2003;19:411–417.
  • Habe H, Kanemitsu M, Nomura M, et al. Isolation and characterization of an alkaliphilic bacterium utilizing pyrene as a carbon source. J Biosci Bioeng. 2004;98:306–308.
  • Sarma SJ, Pakshirajan K. Surfactant aided biodegradation of pyrene using immobilized cells of Mycobacterium frederiksbergense. Int Biodeterior Biodegrad. 2011;65:73–77.
  • Ma XK, Li TT, Fam H, et al. The influence of heavy metals on the bioremediation of polycyclic aromatic hydrocarbons in aquatic system by a bacterial-fungal consortium. Environ Technol. 2018;39:2128–2137. Epub 2017/07/06.
  • Hu P, Brodie EL, Suzuki Y, et al. Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol. 2005;187:8437–8449. Epub 2005/12/03.
  • Thavamani P, Megharaj M, Naidu R. Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium. Biodegradation. 2012;23:823–835. Epub 2012/07/14.
  • Kuppusamy S, Thavamani P, Megharaj M, et al. Polyaromatic hydrocarbon (PAH) degradation potential of a new acid tolerant, diazotrophic P-solubilizing and heavy metal resistant bacterium Cupriavidus sp. MTS; 7, isolated from long-term mixed contaminated soil. Chemosphere. 2016;162:31–39. Epub 2016/08/01.
  • Nzila A, Ramirez CO, Musa MM, et al. Pyrene biodegradation and proteomic analysis in Achromobacter xylosoxidans, PY4 strain. Int Biodeterior Biodegrad. 2018;130:40–47.
  • Kim Y, Freeman J, Moody J, et al. Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Appl Microbiol Biotechnol. 2005;67:275–285.
  • Kanaly RA, Harayama S. Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol. 2010;3:136–164. Epub 2011/01/25.
  • Hou J, Liu W, Wang B, et al. PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere. 2015;138:592–598. Epub 2015/07/27.
  • Lors C, Ryngaert A, Perie F, et al. Evolution of bacterial community during bioremediation of PAHs in a coal tar contaminated soil. Chemosphere. 2010;81:1263–1271. Epub 2010/10/15.
  • Vojtkova H, Kosina M, Sedlacek I, et al. Characterization of Pseudomonas monteilii CCM 3423 and its physiological potential for biodegradation of selected organic pollutants. Folia Microbiol (Praha). 2015;60:411–416. Epub 2014/12/30.
  • Bacosa HP, Inoue C. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan. J Hazard Mater. 2015;283:689–697. Epub 2014/12/03.
  • Mukherjee AK, Bhagowati P, Biswa BB, et al. A comparative intracellular proteomic profiling of Pseudomonas aeruginosa strain ASP-53 grown on pyrene or glucose as sole source of carbon and identification of some key enzymes of pyrene biodegradation pathway. J Proteomics. 2017;167:25–35. Epub 2017/08/05.
  • Hesham AE-L, Mawad AMM, Mostafa YM, et al. Study of enhancement and inhibition phenomena and genes relating to degradation of petroleum polycyclic aromatic hydrocarbons in isolated bacteria. Microbiology. 2014;83:599–607.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.