159
Views
0
CrossRef citations to date
0
Altmetric
Articles

Comparison of the accelerating effect of graphene oxide and graphene on anaerobic transformation of bisphenol F by Pseudomonas sp. LS

, , , , &
Pages 4249-4256 | Received 24 Mar 2021, Accepted 13 Jun 2021, Published online: 08 Jul 2021

References

  • Chen D, Kannan K, Tan H, et al. Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity – a review. Environ Sci Technol. 2016;50:5438–5453. doi: 10.1021/acs.est.5b05387.
  • Liao C, Liu F, Moon HB, et al. Bisphenol analogues in sediments from industrialized areas in the United States, Japan, and Korea: spatial and temporal distributions. Environ Sci Technol. 2012;46:11558–11565. doi: 10.1021/es303191g.
  • Yan Z, Liu Y, Yan K, et al. Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes: occurrence, distribution, source apportionment, and ecological and human health risk. Chemosphere. 2017;184:318–328. doi: 10.1016/j.chemosphere.2017.06.010.
  • Jin H, Zhu L. Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe river basin and Taihu Lake, China. Water Res. 2016;103:343–351. doi: 10.1016/j.watres.2016.07.059.
  • Yuan LL, Qian L, Qian Y, et al. Bisphenol F-induced neurotoxicity toward zebrafish embryos. Environ Sci Technol. 2019;53(24):14638–14648. doi: 10.1021/acs.est.9b04097.
  • Ike M, Chen MY, Danzl E, et al. Biodegradation of a variety of bisphenols under aerobic and anaerobic conditions. Water Sci Technol. 2006;53(6):153–159. doi: 10.2166/wst.2006.189.
  • Wang H, Liu ZH, Zhang J, et al. Insights into removal mechanisms of bisphenol A and its analogues in municipal wastewater treatment plants. Sci Total Environ. 2019;692:107–116. doi: 10.1016/j.scitotenv.2019.07.134.
  • Xu XY, Huang H, Zhang Y, et al. Biochar as both electron donor and electron shuttle for the reduction transformation of Cr(VI) during its sorption. Environ Pollut. 2019;244:423–430. doi: 10.1016/j.envpol.2018.10.068.
  • Toral-Sánchez E, Rangel-Mendez JR, Valdés JAA, et al. Tailoring partially reduced graphene oxide as redox mediator for enhanced biotransformation of iopromide under methanogenic and sulfate-reducing conditions. Bioresour Technol. 2017;223:269–276. doi: 10.1016/j.biortech.2016.10.062.
  • Pereir RA, Pereira MFR, Alves MM, et al. Carbon based materials as novel redox mediators for dye wastewater biodegradation. Appl Catal B. 2014;144:713–720. doi: 10.1016/j.apcatb.2013.07.009.
  • Salas EC, Sun ZZ, Lüttge A, et al. Reduction of graphene oxide via bacterial respiration. ACS Nano. 2010;4(8):4852–4856. doi: 10.1021/nn101081t.
  • Li YJ, Wang QS, Liu LY, et al. Enhanced phenols removal and methane production with the assistance of graphene under anaerobic co-digestion conditions. Sci Total Environ. 2021;759:143523), doi: 10.1016/j.scitotenv.2020.143523.
  • Liu YW, Li X, Wu SH, et al. Enhancing anaerobic digestion process with addition of conductive materials. Chemosphere. 2021;278:130449), doi: 10.1016/j.chemosphere.2021.130449.
  • Zhou Q, Li X, Wu SH, et al. Enhanced strategies for antibiotic removal from swine wastewater in anaerobic digestion. Trends Biotechnol. 2021;39(1):8–11. doi: 10.1016/j.tibtech.2020.07.002.
  • Song BR, Tang JC, Zhen MN, et al. Influence of graphene oxide and biochar on anaerobic degradation of petroleum hydrocarbons. J Biosci Bioeng. 2019;128(1):72–79. doi: 10.1016/j.jbiosc.2019.01.006.
  • Jiang M, Feng L, Zheng X, et al. Bio-denitrification performance enhanced by graphene-facilitated iron acquisition. Water Res. 2020;180(115916).doi: 10.1016/j.watres.2020.115916.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–254. doi: 10.1006/abio.1976.9999.
  • Cataldo DA. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal. 1975;6(1):71–80. doi: 10.1080/00103627509366547.
  • Chen MY, Ike M, Fujita M. Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols. Environ. Toxicol. 2002;17(1):80–86. doi: 10.1002/tox.10035.
  • Audebert M, Dolo L, Perdu E, et al. Use of the γH2AX assay for assessing the genotoxicity of bisphenol A and bisphenol F in human cell lines. Arch Toxicol. 2011;85(11):1463–1473. doi:10.1007/s00204-011-0721-2.
  • Li G, Zu L, Wong PK, et al. Biodegradation and detoxification of bisphenol A with one newly-isolated strain Bacillus sp. GZB: kinetics, mechanism and estrogenic transition. Bioresour Technol. 2012;114:224–230. doi: 10.1016/j.biortech.2012.03.067.
  • Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010;4(10):5731–5736. doi: 10.1021/nn101390x.
  • Wang J, Zhou Y, Li P. Effects of redox mediators on anaerobic degradation of phenol by Shewanella sp. XB. Appl Biochem Biotechnol. 2015;175:3162–3172. doi: 10.1007/s12010-015-1490-9.
  • Song TS, Tan WM, Xie JJ. Bio-reduction of graphene oxide using sulfate-reducing bacteria and its implication on anti-biocorrosion. J Nanosci Nanotechnol. 2018;18(8):5770–5776. doi: 10.1166/jnn.2018.15469.
  • Chen HQ, Gao D, Wang B, et al. Graphene oxide as an anaerobic membrane scaffold for the enhancement of B. adolescentis proliferation and antagonistic effects against pathogens E. coli and S. aureus. Nanotechnol. 2014;25(16):165101), doi: 10.1088/0957-4484/25/16/165101.
  • Mokkapati VRSS, Pandit S, Kim J, et al. Bacterial response to graphene oxide and reduced graphene oxide integrated in agar plates. R Soc Open Sci. 2018;5(11):181083), doi: 10.1098/rsos.181083.
  • Hu XG, Ouyang SH, Li M, et al. Effects of graphene oxide and oxidized carbon nanotubes on the cellular division, microstructure, uptake, oxidative stress, and metabolic profiles. Environ Sci Technol. 2015;49(18):10825–10833. doi: 10.1021/acs.est.5b02102.
  • Akhavan O, Ghaderi E. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon N Y. 2012;50(5):1853–1860. doi: 10.1016/j.carbon.2011.12.035.
  • Zhao G, Wen T, Chen CL, et al. Synthesis of graphene-based nanomaterials and their application in energy-related and environmental-related areas. RSC Adv. 2012;2:9286–9303. doi: 10.1039/c2ra20990j.
  • Kim S, Park CM, Jang M, et al. Aqueous removal of inorganic and organic contaminants by graphene-based nanoadsorbents: a review. Chemosphere. 2018;212:1104–1124. doi: 10.1016/j.chemosphere.2018.09.033.
  • Guo ZL, Xie CJ, Zhang P, et al. Toxicity and transformation of graphene oxide and reduced graphene oxide in bacteria biofilm. Sci Total Environ. 2017;580:1300–1308. doi: 10.1016/j.scitotenv.2016.12.093.
  • Chen Z, Jiang Y, Chang Z, et al. Denitrification characteristics and pathways of a facultative anaerobic denitrifying strain, Pseudomonas denitrificans G1. J Biosci Bioeng. 2020;129(6):715–722. doi: 10.1016/j.jbiosc.2019.12.011.
  • Wang X, Duo Y, He J, et al. A newly isolated and rapid denitrifier Pseudomonas citronellolis WXP-4: difference in N2O emissions under aerobic and anaerobic conditions. Bioprocess Biosyst Eng. 2020;43(5):811–820. doi: 10.1007/s00449-019-02276-6.
  • Tang M, Jiang J, Lv Q, et al. Denitrification performance of Pseudomonas fluorescens Z03 immobilized by graphene oxide-modified polyvinyl-alcohol and sodium alginate gel beads at low temperature. R Soc Open Sci. 2020;7(3):191542), doi: 10.1098/rsos.191542.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.