145
Views
0
CrossRef citations to date
0
Altmetric
Articles

Perchlorate bioreduction in UASB reactor: S2--autotrophic granular sludge formation and sulphate generation control

, , , , , , , & show all
Pages 4330-4340 | Received 07 Feb 2021, Accepted 19 Jun 2021, Published online: 09 Jul 2021

References

  • Li K, Guo J, Li H, et al. A combined heterotrophic and sulfur-based autotrophic process to reduce high concentration perchlorate via anaerobic baffled reactors: performance advantages of a step-feeding strategy. Bioresour Technol. 2019;279:297–306. doi:10.1016/j.biortech.2019.01.111.
  • Lian J, Tian X, Guo J, et al. Effects of resazurin on perchlorate reduction and bioelectricity generation in microbial fuel cells and its catalysing mechanism. Biochem Eng J. 2016;114:164–172. doi:10.1016/j.bej.2016.06.028.
  • Jodeh S. Efficiency of magnetic chitosan supported on graphene for removal of perchlorate ions from wastewater. Environ Technol. 2019;149:1–13. doi:10.1080/09593330.2019.1657963.
  • Xu X, Gao B, Jin B, et al. Study of microbial perchlorate reduction: considering of multiple pH, electron acceptors and donors. J Hazard Mat. 2015;285:228–235. doi:10.1016/j.jhazmat.2014.10.061.
  • Yin P, Guo J, Xiao S, et al. Rapid of cultivation dissimilatory perchlorate reducing granular sludge and characterization of the granulation process. Bioresour Technol. 2019;276:260–268. doi:10.1016/j.biortech.2018.12.070.
  • EPA. Announcement of the drinking water contaminant candidate list; 2009. Available from: https://www.epa.gov/sdwa/drinking-water-regulations-and-contaminants
  • Xu J, Gao N, Zhao D, et al. Bromate reduction and reaction-enhanced perchlorate adsorption by FeCl3-impregnated granular activated carbon. Water Res. 2019;149:149–158. doi:10.1016/j.watres.2018.11.005.
  • Sevda S, Sreekishnan TR, Pous N, et al. Bioelectroremediation of perchlorate and nitrate contaminated water: a review. Bioresour Technol. 2018;255:331–339. doi:10.1016/j.biortech.2018.02.005.
  • Ye L, You H, Yao J, et al. Water treatment technologies for perchlorate: a review. Desalination. 2012;298:1–12. doi:10.1016/j.desal.2012.05.006.
  • Yang Q, Yao F, Zhong Y, et al. Catalytic and electrocatalytic reduction of perchlorate in water – a review. Chem Eng J. 2016;306:1081–1091. doi:10.1016/j.cej.2016.08.041.
  • Jia Y, Ye L, Kang X, et al. Photoelectrocatalytic reduction of perchlorate in aqueous solutions over Ag doped TiO2 nanotube arrays. J Photochem Photobiol A. 2016;328:225–232. doi:10.1016/j.jphotochem.2016.05.023.
  • Lv P-L, Shi L-D, Dong Q-Y, et al. How nitrate affects perchlorate reduction in a methane-based biofilm batch reactor. Water Res. 2020;171:115397. doi:10.1016/j.watres.2019.115397.
  • Vijaya Nadaraja A, Gangadharan Puthiya Veetil P, Vidyadharan A, et al. Kinetics of chlorite dismutase in a perchlorate degrading reactor sludge. Environ Technol. 2013;34(13-16):2353–2359. doi:10.1080/09593330.2013.770557.
  • Anoop Raj JR, Muruganandam L. Biodegradation of perchlorate from real and synthetic effluent by proteobacterium ARJR SMBS in a stirred tank bioreactor system. Environ Technol. 2013;34(7):841–852. doi:10.1080/09593330.2012.720715.
  • Ucar D, Cokgor EU, Sahinkaya E. Heterotrophic-autotrophic sequential system for reductive nitrate and perchlorate removal. Environ Technol. 2016;37(2):183–191. doi:10.1080/09593330.2015.1065009.
  • Zhang C, Guo J, Lian J, et al. Bio-mixotrophic perchlorate reduction to control sulfate production in a step-feed sulfur-based reactor: a study of kinetics, ORP and bacterial community structure. Bioresour Technol. 2018;269:40–49. doi:10.1016/j.biortech.2018.08.084.
  • Ju X, Sierra-Alvarez R, Field JA, et al. Microbial perchlorate reduction with elemental sulfur and other inorganic electron donors. Chemosphere. 2008;71:114–122. doi:10.1016/j.chemosphere.2007.09.045.
  • Chairez M, Luna-Velasco A, Field JA, et al. Reduction of bromate by biogenic sulfide produced during microbial sulfur disproportionation. Biodegradation. 2010;21(2):235–244. doi:10.1007/s10532-009-9296-5.
  • Guo J, Zhang C, Lian J, et al. Effect of thiosulfate on rapid start-up of sulfur-based reduction of high concentrated perchlorate: a study of kinetics, extracellular polymeric substances (EPS) and bacterial community structure. Bioresour Technol. 2017;243:932–940. doi:10.1016/j.biortech.2017.07.045.
  • Wan D, Liu Y, Wang Y, et al. Sulfur disproportionation tendencies in a sulfur packed bed reactor for perchlorate bio-autotrophic reduction at different temperatures and spatial distribution of microbial communities. Chemosphere. 2019;215:40–49. doi:10.1016/j.chemosphere.2018.10.006.
  • Cui Y-X, Guo G, Biswal BK, et al. Investigation on sulfide-oxidizing autotrophic denitrification in moving-bed biofilm reactors: an innovative approach and mechanism for the process start-up. Int Biodeter Biodegr. 2019;140:90–98. doi:10.1016/j.ibiod.2019.03.016.
  • Patel A, Zuo G, Lehman SG, et al. Fluidized bed reactor for the biological treatment of ion-exchange brine containing perchlorate and nitrate. Water Res. 2008;42(16):4291–4298. doi:10.1016/j.watres.2008.07.018.
  • Sheng G-P, Yu H-Q, Li X-Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv. 2010;28:882–894. doi:10.1016/j.biotechadv.2010.08.001.
  • Chen H, Li A, Cui C, et al. AHL-mediated quorum sensing regulates the variations of microbial community and sludge properties of aerobic granular sludge under low organic loading. Environ Int. 2019;130:104946. doi:10.1016/j.envint.2019.104946.
  • Niu W, Guo J, Lian J, et al. Rapid start-up of denitrifying granular sludge by dosing with semi-starvation fluctuation C/N ratio strategy. Bioresour Technol. 2017;241:945–950. doi:10.1016/j.biortech.2017.05.206.
  • Liu Y-Q, Tay J-H. Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate. Water Res. 2015;80:256–266. doi:10.1016/j.watres.2015.05.015.
  • Zhao R, Guo J, Song Y, et al. Mediated electron transfer efficiencies of Se(IV) bioreduction facilitated by meso-tetrakis (4-sulfonatophenyl) porphyrin. Int Biodeter Biodegr. 2020;147:104838), doi:10.1016/j.ibiod.2019.104838.
  • Gu B, Brown GM, Chiang C-C. Treatment of perchlorate-contaminated groundwater using highly selective, regenerable ion-exchange technologies. Environ Sci Technol. 2007;41(17):6277–6282. doi:10.1021/es0706910.
  • Jiang C, Yang Q, Wang D, et al. Simultaneous perchlorate and nitrate removal coupled with electricity generation in autotrophic denitrifying biocathode microbial fuel cell. Chem Eng J. 2017;308:783–790. doi:10.1016/j.cej.2016.09.121.
  • Xie T, Yang Q, Winkler MKH, et al. Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor: performance and microbial community structure. J Hazard Mater. 2018;357(5):244–252. doi:10.1016/j.jhazmat.2018.06.011.
  • Gao M, Wang S, Ren Y, et al. Simultaneous removal of perchlorate and nitrate in a combined reactor of sulfur autotrophy and electrochemical hydrogen autotrophy. Chem Eng J. 2016;284(15):1008–1016. doi:10.1016/j.cej.2015.09.082.
  • Okabe S, Oshiki M, Takahashi Y, et al. N2O emission from a partial nitrification-anammox process and identification of a key biological process of N2O emission from anammox granules. Water Res. 2011;45:6461–6470. doi:10.1016/j.watres.2011.09.040.
  • Wang B, Wu D, Ekama GA, et al. Characterization of a new continuous gas-mixing sulfidogenic anaerobic bioreactor: hydrodynamics and sludge granulation. Water Res. 2018;135:251–261. doi:10.1016/j.watres.2018.02.013.
  • Shi Z-J, Xu L-Z-J, Huang B-C, et al. A novel strategy for anammox consortia preservation: transformation into anoxic sulfide oxidation consortia. Sci Total Environ. 2020;723:138094), doi:10.1016/j.scitotenv.2020.138094.
  • Brock. Brock biology of microorganisms. Prentice; 2000.
  • Han Y, Guo J, Zhang Y, et al. Anaerobic granule sludge formation and perchlorate reduction in an upflow anaerobic sludge blanket (UASB) reactor. Bioresource Technol Rep. 2018;4:123–128. doi:10.1016/j.biteb.2018.09.012.
  • Li J, Yu L, Yu D, et al. Performance and granulation in an upflow anaerobic sludge blanket (UASB) reactor treating saline sulfate wastewater. Biodegradation. 2014;25(1):127–136. doi:10.1007/s10532-013-9645-2.
  • Liu W, Lian J, Guo J, et al. Perchlorate reduction by anaerobic granular sludge under different operation strategies: performance, extracellular polymeric substances and microbial community. Bioresource Technol Rep. 2019;8:100312. doi:10.1016/j.biteb.2019.100312.
  • Wang Z, Gao M, Wei J, et al. Extracellular polymeric substances, microbial activity and microbial community of biofilm and suspended sludge at different divalent cadmium concentrations. Bioresour Technol. 2016;205:213–221. doi:10.1016/j.biortech.2016.01.067.
  • Liu Y, Fang HHP. Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge. Crit Rev Environ Sci Technol. 2003;33:237–273. doi:10.1080/10643380390814479.
  • Wang T, Liu Y, Guo J, et al. Rapid start up anammox process through a new strategy with inoculating perchlorate reduction sludge and a small amount of anammox sludge. Biochem Eng J. 2020;164:107784. doi:10.1016/j.bej.2020.107784.
  • Wan D. Simultaneous bio-autotrophic reduction of perchlorate and nitrate in a sulfur packed bed reactor: kinetics and bacterial community structure. Water Res. 2016;108(1):280–292. doi:10.1016/j.watres.2016.11.003.
  • Peng P. Effect of adding low-concentration of rhamnolipid on reactor performances and microbial community evolution in MBBRs for low C/N ratio and antibiotic wastewater treatment. Bioresour Technol. 2018;S0960852418302190. doi:10.1016/j.biortech.2018.02.035.
  • Yanan S. Bio-reduction of free and laden perchlorate by the pure and mixed perchlorate reducing bacteria: considering the pH and coexisting nitrate. Chemos Environ Toxicol Risk Assessment. 2018;205:275–283. doi:10.1016/j.chemosphere.2018.04.132.
  • Yang Z-H, Stöven K, Haneklaus S, et al. Elemental sulfur oxidation by Thiobacillus spp. and aerobic heterotrophic sulfur oxidizing bacteria. Pedosphere. 2010;20(1):71–79. doi:10.1016/S1002-0160(09)60284-60288.
  • Boden R, Hutt LP, Rae AW. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the ‘Proteobacteria’, and four new families within the orders Nitrosomonadales and Rhodocyclales. Int J Syst Evol Microbiol. 2017;67(5):1191–1205. doi:10.1099/ijsem.0.001927.
  • Jeswani H, Mukherji S. Batch studies with Exiguobacterium aurantiacum degrading structurally diverse organic compounds and its potential for treatment of biomass gasification wastewater. Int Biodeter Biodegr. 2013;80:1–9. doi:10.1016/j.ibiod.2013.02.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.